Debugging without Debuggers

Lecture 6
CS195

Debugging sans Debuggers

- Debugging is more than debuggers
- In fact, debuggers are often the last resort
- Two other common problems:
 - Figuring out which program change caused a bug
 - Reducing a test case to a minimal example

A Generic Algorithm

- How do people solve these problems?
- Binary search
 - Cut the test case in half
 - Iterate
- Brilliant idea: Why not automate this?

Delta Debugging

- Find set of changes that cause a program to fail a test case
- Want to find a minimal set of changes that cause failure

Version I

- Assume
 - There is a set of changes \(C \)
 - There is a single change that caused failure
 - Every set of changes is possible
 - Any subset produces a test case that either passes \(\top \) or fails \(\bot \)

Algorithm for Version I

/* invariant: \(P \) with changes \(c_1, \ldots, c_n \) fails */

\[DD(P, c_1, \ldots, c_n) = \]
if \(n = 1 \) return \(c_1 \)
let \(P_1 = P \oplus (c_1 \ldots c_{n/2}) \)
let \(P_2 = P \oplus (c_{n/2+1} \ldots c_n) \)
if \(P_1 = \top \)
 then \(DD(P, c_{n/2+1} \ldots c_n) \)
else \(DD(P, c_1 \ldots c_{n/2}) \)

This is just binary search...
Extensions

- Let's get fancy. Assume:
 - Any subset of changes may cause the bug
 - But no undefined (?) tests, yet

- And the world is
 - Monotonic:
 \[P \circ C = x \Rightarrow P \circ (C \cup C) = x \]
 - Unambiguous:
 \[P \circ C = x \land P \circ C = y \Rightarrow P \circ (C \cap C) = x \land y \]
 - Consistent
 \[P \circ C = ? \]

Scenarios

Try binary search:
- Divide changes \(C \) into \(C_1 \) and \(C_2 \)
- If \(P \circ C = x \), recurse with \(C_1 \)
- If \(P \circ C = x \), recurse with \(C_2 \)

Notes:
- At most one case can apply, by ambiguity
- By consistency, only other possibility is
 \[P \circ C_1 = ? \land P \circ C_2 = ? \]
- What happens in this case?

Interference

By monotonicity, if \(P \circ C_1 = \bot \land P \circ C_2 = \bot \) then no subset of \(C_1 \) or \(C_2 \) causes failure

So the failure must be a combination of elements from \(C_1 \) and \(C_2 \)

This is called interference

Handling Interference

- The cute trick:
 - Consider \(P \circ C_1 \)
 - Find minimal \(D_1 \subset C_1 \) s.t. \(P \circ C_1 \cup D_1 \neq x \)
 - Consider \(P \circ C_2 \)
 - Find minimal \(D_2 \subset C_2 \) s.t. \(P \circ C_2 \cup D_1 \neq x \)

- Then by unambiguity
 \[P \circ (C_1 \cup D_2) \cap (C_2 \cup D_1) = P \circ (D_1 \cup D_2) \]
- This is also minimal

Example: 3 & 6 (of 8) Cause Failure

```
<table>
<thead>
<tr>
<th>1 2 3 4 5 6 7 8</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4</td>
<td>√</td>
</tr>
<tr>
<td>5 6 7 8</td>
<td>√</td>
</tr>
<tr>
<td>3 4 5 6 7 8</td>
<td>X</td>
</tr>
</tbody>
</table>

interference

<table>
<thead>
<tr>
<th>1 2 3 4 5 6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 4 5 6 7 8 X</td>
<td></td>
</tr>
<tr>
<td>2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>1 2 3 4 6 X</td>
<td></td>
</tr>
</tbody>
</table>
```

Algorithm

/* invariant: \(P \) with changes \(c_0, \ldots, c_n \) fails */

\[
\text{DD}(P, \{c_0, \ldots, c_n\}) = \\
\text{if } n = 1 \text{ return } \{c_0\} \\
P_1 \leftarrow P \circ \{c_0, \ldots, c_{n-1}\} \\
P_2 \leftarrow P \circ \{c_{n-1}, \ldots, c_n\} \\
\text{if } P_1 = x \text{ then DD}(P, \{c_0, \ldots, c_{n-1}\}) \\
\text{else } P_2 = x \text{ then DD}(P, \{c_{n-1}, \ldots, c_n\}) \\
\text{else } \text{DD}(P, \{c_0, \ldots, c_{n-1}\}) \cup \text{DD}(P, \{c_{n-1}, \ldots, c_n\})
\]
Complexity

- If a single change induces the failure, then logarithmic
 - Why?
- Otherwise, linear
 - Assumes constant time per invocation
 - Is this realistic?

Handling Inconsistency

- Idea
 - Get information from a subset \(C \)
 - And its complement \(\neg C \)
- We may also work with more than 2 subsets at a time

Complexity

- Linear
- Two test for \(C \) and \(\neg C \)
- At most double tests at each level
 - For at most \(\log N \) levels

Revisit the Assumptions

- All three assumptions are suspect
- But consistency is egregious
 - In practice, many inconsistent sets of changes
 - E.g., because some changes must be made together
 - Or in order, etc.

Handling Inconsistency: Cases

For each \(C \in \{ C_1, \ldots, C_n \} \):
1. If \(P \oplus C = \checkmark \), recurse on \(C \)
 - As before
2. If \(P \oplus C = \checkmark \) and \(P \oplus \neg C = \checkmark \), interference
3. If \(P \oplus C = ? \) and \(P \oplus \neg C = \checkmark \), preference
 - \(C \) has a failure-inducing subset
 - Possibly in interference with \(\neg C \)
4. Otherwise, try again
 - Repeat with twice as many subsets

Improvement

- If \(P \oplus R = \checkmark \), then no subset of \(R \) causes failure
 - By monotonicity
- Accumulate some such \(R \) and apply at every opportunity
 - If \(P \oplus C \oplus R = \checkmark \) and \(P \oplus \neg C \oplus R = \checkmark \), interference
- Why? To promote consistency
 - Closer to original, failing program
 - More likely to be consistent
 - See Section 5 of the paper
Results

- This really works!
- Isolates problematic change in gdb
 - After lots of work
 - But finding it by hand would be a nightmare

Opinions

- The assumptions aren’t realistic
 - Monotonicity
 - Unambiguity
 - Consistency
- Apparently one author thinks so, too
 - Second paper

Delta Debugging **

- Drop all of the assumptions
- What can we do?
- Problem formulation
 Find a set of changes that cause the problem, but removing any change causes the problem to go away
- This is 1-minimality

Model

- Once again, a test either
 - Passes ✓
 - Fails ×
 - Is unresolved ?

Naïve Algorithm

- To find a 1-minimal subset of C, simply
- Remove one element c from C
- If C - {c} = \(\chi \), recurse with smaller set
- If C - {c} \(\neq \chi \), C is 1-minimal

Analysis

- In the worst case,
 - We remove one element from the set per iteration
 - After trying every other element
- Work is potentially
 \(N \cdot (N-1) \cdot (N-2) \cdot \ldots \)
- This is \(O(N^2) \)
Work Smarter, Not Harder

- We can often do better
- Silly to start out removing 1 element at a time
 - Try dividing change set in 2 initially
 - Increase # of subsets if we can’t make progress
 - If we get lucky, search will converge quickly

Algorithm

\[DD(P, \{C_1, \ldots, C_n\}) = \]
- if \(P \cup C = \emptyset \) then \(DD(P, \{C_1, C_2\}) \)
- if \(P \cup C = \emptyset \) then \(DD(P, \{C_1, \ldots, C_{i-1}, C_{i+1}, \ldots, C_n\}) \)
- otherwise \(DD(P, \{C_1, C_2, \ldots, C_n\}) \)

Analysis

- Worst case is still quadratic
- Subdivide until each set is of size 1
 - Reduced to the naive algorithm
- Good news
 - For single, monotone failure, converges in \(\log N \)
 - Binary search again

A Distinction

- Simplification
 - Removing any piece of the test removes the failure; every piece of the test is relevant
- Isolation
 - Find at least one relevant piece of the test; removing this piece makes the failure go away

Simplification vs. Isolation

- So far, DD does simplification
- Performance is inherently limited
 - Must remove every piece of test separately to verify that it is simplified
 - Performance limited by size of output
- Isolation, however, can be more efficient
 - Just need to find a change that makes working test case fail

Formalization

- Consider two test cases
 - \(P @ C = \checkmark \)
 - \(P @ D = \times \)
 - \(C \subseteq D \)
- Then \(D - C \) is 1-minimal if
 - For each \(c \in (D - C) \)
 - \(P @ (C \cup (c)) = \checkmark \)
 - \(P @ (D - (c)) = \times \)
1. Minimality

- There is always a 1-minimal pair

- Proof
 - Initially
 - original program works \(C = \emptyset \)
 - modified program fails \(D = \{ \text{all changes} \} \)
 - DD produces \(D' \) that is minimal
 - Now add elements of \(D' \) to \(C \) until failure

Algorithm

\[
\text{DD}(P, C \cup D(e_1, \ldots, e_n)) =
\begin{cases}
 \text{if } P \circ (C \cup e_i) = X & \text{then} \\
 \text{DD}(P.C \cup D(e_1, e_2, \ldots, e_n)) & \text{if } P \circ (D - e_i) = X \\
 \text{DD}(P.D - e_i.D(e_1, e_2, \ldots, e_n)) & \text{if } P \circ (C \cup e_i) = X \\
\end{cases}
\]

Analysis

- Worst case is the same
 - Worst case example is the same
 - Quadratic

- But best case has improved significantly
 - If all tests either pass or fail, runs in \(\log N \)

Algorithm

\[
\text{DD}(P, C \cup D(e_1, \ldots, e_n)) =
\begin{cases}
 \text{if } P \circ (C \cup e_i) = X & \text{then} \\
 \text{DD}(P.C \cup D(e_1, e_2, \ldots, e_n)) & \text{if } P \circ (D - e_i) = X \\
 \text{DD}(P.D - e_i.D(e_1, e_2, \ldots, e_n)) & \text{if } P \circ (C \cup e_i) = X \\
\end{cases}
\]

Case Studies

- Many in the papers
 - And convincing, too

- Isolating failure in modified \texttt{gdb}
 - 178,000 modified source lines
 - Symptom was that program simply crashed
 - What was the bug? Changing
 - "Set arguments to give..."
 - "Set argument list to give..."

A Depressing Example

- Famous paper showed 40% Unix utilities failed on random inputs

- Repeated that experiment
 - And found the same results, 10 years later!
 - Conclusion: Nobody cares

- Applied delta debugging to minimize test cases
 - Revealed buffer overrun, parsing problems
The Importance of Changes

- Basic to delta debugging is a change
 - We must be able to express the difference between the good and bad examples at a set of changes
- But notion of change is semantic
 - Not easy to capture in a general way in a tool
- And notion of change is algorithmic
 - Poor notion of change = many unresolved tests
 - Performance goes from linear (or sub-linear) to quadratic

Opinion

- Delta Debugging is a technique, not a tool
- Bad News:
 - Probably must be reimplemented for each significant system
 - To exploit knowledge of changes
- Good News:
 - Relatively simple algorithm, significant payoff
 - It's worth reimplementing

Nation of Change

- We can see this in the experiments
 - Some gdb experiments took 48 hours
 - Improvements came from improving notion of changes
- Also important to exploit correlations between changes
 - Some subsets of changes require other changes
 - Again, can affect asymptotic performance