Program Checking

Lecture 11
CS195

The Idea

• Software should check its own work
 - When the answer is computed, check that it is the correct answer
• Just as we check our own work...
 - Do sums forwards and backwards

What Does It Mean to Check?

• Say f(x) = y

• How can we verify y = f(x)?
 - Want to do this quickly
 - Completely (not a partial check)

The Definition

• C is a simple checker for f iff:
 • C is asymptotically faster than f
 • $C(x,y) = true \iff f(x) = y$
 - With high probability, if C is randomized

Explanation

• Why should C be faster than f?

• Two reasons:
 - Practicality
 - Asymptotically, checker has negligible cost
 - Theory
 - Forces the checker to be different from the program

Example: Factoring Integers

• Problem: factor a large integer
 - Believed to be very hard

• Checker
 - Multiply factors together

• More generally, any problem in NP has a PTime checker.
Another Example

- Sort an array of numbers
- How do we check this? Need two things:
 - Elements are ordered
 - Elements are a permutation of original array
 - Compute checksum of both arrays and compare
- Sorting is $O(n \log n)$, but checker is $O(n)$

And Another Example

- Problem:
 - Is k in sorted array A?
- Algorithm:
 - Binary search, return yes/no
- Problem:
 - This is not efficiently checkable
- Solution:
 - Change the output to give index into array
 - This gives a constant time check

Interface

- The last example is instructive
 - Sometimes we must augment the output with extra information to enable efficient checking
- This is a general technique
 - What can I add to the output to make it verifiably correct?

And Another Example

- Translation validation
 - Is my compiled program faithful to the original?
 - A very widespread, low-level problem
 - Limits what compiler writers will attempt
 - A research subarea of its own (recent)

Translation Validation Sketch

- A compiler proves to itself that the source and target programs are equivalent
- Make this proof explicit
 - And part of the output
- Proof checking is relatively easy
 - In contrast to proof discovery

Randomness

- Randomization often gives very simple and fast checkers
- Problem: Calculate $A \times B = C$
 - Let r be a randomly chosen small prime
 - Check $((A \mod r) \times (B \mod r)) \mod r = C \mod r$
Why Does this Work?

- \[((A \mod r) \times (B \mod r)) \mod r = C \mod r\]
- If \(A \times B\) does equal \(C\), then the \(=\) clearly holds
- If \(A \times B = C'\), then \(C \mod r \neq C' \mod r\) with high probability
- Small number multiplies/mod can be done fast
- Remember this when we discuss the Pentium bug

Comparison with Other Techniques

- Verification
- Assert
- Testing
- "Fault tolerance"

Verification

- Verification proves correctness for all inputs
 - Before the program is run in production
- Checking proves correctness on one input
 - The one we care about: the current one
- But verification is largely a strawman
 - Full verification is only used in special situations

Assert Programming

- Many programmers use asserts
 - Really, the culture of checking
- But checking is different!
 - Rigorous: checking correctness
 - Time bounds: many asserts are slow

Testing

- Testing is arguably less effective alone than checking used alone
- Checking is
 - Automatic
 - Runs every time
 - Rigorous (says yes/no correctly)
 - At least if checker is correct
- But in reality we want both
 - Checking makes the test suite more effective, and vice versa

Digression: The Pentium Bug

- To produce Pentium, Intel used at least
 - Verification
 - Automatic compilation of high-level equations to lower levels of circuit design
 - Testing
 - Presumably very intensive
- But neither approach found the bug
 - Checking would have found this one
An Example of the Pentium Bug

\[x = 4195835 \]
\[y = 3145727 \]
\[z = x - (x/y) \times y \]

Answer is 0
Pentium gives 256

The Bug

- Pentium uses a fast floating point division algorithm
- Requires a table of constants
 - Three "2" entries were left out of the table
 - Treated as "0"s by the processor

Fault Tolerance

- Multiple different implementations
- Drawbacks
 - Very expensive
 - Slow and/or parallel hardware requirements
 - No assurance distinct implementations aren't correlated
- Example: The space shuttle

Correctors

- Don't just find bugs, fix bugs
- How can we do that?!
- Randomization is the key...

Sketch

- Here's the game:
 - Given \(f \), which computes correct answer with known probability
 - The correcting program uses \(f \) as a subroutine
 - Idea: Use multiple calls to \(f \) to calculate the answer in different ways
 - Constraint: Only allowed a constant factor increase in running time

An Example

- Consider multiplication \(a \times b \)
 - Over a finite field
- Choose random numbers \(r_1, r_2 \)
- Calculate
 \[
 (a - r_1) \times (b - r_2) + (a - r_1) \times (b - r_2) + r_1 \times r_2
 = (a - r_1) \times (b - r_2) \times r_1 + (a - r_1) \times r_2
 = a \times b
 \]
Why Does this Work?

\[(a - r_1) \times (b - r_2) + (a - r_1) \times r_2 + (b - r_2) \times r_1\]

- Each multiplication is a random pair
 - With respect to a, b
 - So each is correct with a known probability \(p\)
 - Sum is wrong bounded above by probability \(4(1 - p)\)
- Repeat trials to increase probability to desired level

Opinions on Correctors

- This sounds like a crazy idea
 - How often is multiplication buggy?
 - How often is my problem a finite field?
- Crazy or not, people are working on it...

Correctors: Historical Example

- But people have tried to build correctors for complex problems
- Consider a historical example where the output is human-generated
 - But could be machine generated
- PL/C was a PL/1 compiler developed at Cornell
 - In the days when compilation was expensive
 - Automatically corrected errors in program
 - Always yielded a valid program "close to" the one the programmer entered

PL/C

- The experience with PL/C was that automatic correction didn’t work
 - The further a program was from a valid program, the more bizarre the output
 - Example: "To be or not to be, that is the question...." Compiles to "begin end;"
- The idea died as compilers got faster

A Use of Correction in the Real World

- There are two kinds of bugs
 - Deterministic
 - These are repeatable—we can find and fix these
 - Non-deterministic
 - Timing bugs
 - Must get lucky to fix one of these
- For a non-deterministic bug, just try again
 - Standard in commercial databases
 - This is a form of automatic correction
 - Note: Requires fail-stop semantics, though

Correctors: Repairing Data Structures

- Write down data structure invariants
 - i.e., asserts
 - But in a nicer specification language
- Example: a file system
 - File system root exists
 - File reference counts consistent with references from directories
 - No block belongs to more than one file
Idea

- Convert each specification into DNF formula
 - Disjunction of conjunctions of basic propositions
- When a violation is detected, pick conjunction that is false
 - Choose based on cost model
 - Repair each of the atomic predicates
- More complicated than it sounds
 - Might not terminate

Autonomic Computing

- Data structure repair is just one facet of a push to make systems "self correcting"
- Buzzword: Autonomic computing
 - Automatic allocation of resources
 - Believable
 - Automatic repair of faults
 - Less believable

Conclusions about Correction

- Not obvious how to apply the idea in full to a complex system
- But a useful idea for specific properties
 - Non-deterministic, but detectable, bugs
 - Perhaps repairing data structures

Back to Checkers

- Each CS community has its view of software engineering
- Programming languages
 - The answer is the compiler
 - i.e., static analysis
- Operating systems
 - The answer is the operating system
 - i.e., dynamic analysis, use LRU
- Theory
 - The answer is asymptotic complexity + randomization

Back to the Definition

- A checker for f is a program that
 - Verifies/refutes that f(x) = y correctly
 - Does so in asymptotically less time than f
- Examine the assumptions underlying this approach

Assumption: The Specification

- Checking f requires we know f’s specification
 - Completely, not just partially
- There is no big system for which we know the full specification
- Partially explains why checking examples are all tiny, neat problems
Assumption: Functions

- Assume programs are input-output functions
- But this is not realistic
 - Most important systems are stream transducers
 - Take a sequence of inputs, produce sequence of outputs
 - Need notion of correct behavior up to a point in time

Assumption: Asymptotic Complexity is Crucial

- Checker must be asymptotically faster
 - Great if it is, but is this required?
- In practice, happy if checker is $\leq 10\%$ of time to compute answer
- But, asymptotic requirement is useful
 - Forces critical thinking in asserts
 - More likely to have orthogonal checker

Note

- Two kinds of bugs:
 - Fail-stop
 - Program dumps core, throws uncaught exception, etc.
 - Malicious
 - Program keeps going, but just produces the wrong answer
- Checking is about the second class only
 - More pernicious than fail-stop
 - But today the world has enough trouble with fail-stop bugs

Checking

- Program checking is a great idea
- Three parts
 - Function produces output that can be checked
 - Independently
 - Checking cost is small relative to computing answer
 - Checking actually checks correctness
- Use this!