Computer Science Research

CS 197 & 197C | Stanford University | Sean Liu & Lauren Gillespie

Slides adapted from previous iterations of the course: Michael Bernstein & Jingyi Li.
Computer Science Research

CS 197 & 197C | Stanford University | Sean Liu & Lauren Gillespie

Slides adapted from previous iterations of the course: Michael Bernstein & Jingyi Li.
What is computer science research?
Seeking a Better Way to Find Web Images

STANFORD, Calif. — You may think you can find almost anything on the Internet.

But even as images and video rapidly come to dominate the Web, search engines can ordinarily find a given image only if the text entered by a searcher matches the text with which it was labeled. And the labels can be unreliable, "fuzzy" instead of "rabbit" or simply nonexistent.

To eliminate those limits, scientists will need to create a new generation of visual search technologies — or else, as the Stanford computer scientist Fei-Fei Li recently put it, the Web will be in danger of "going dark."

Now, along with computer scientists from Princeton, Dr. Li, 36, has built the world's largest visual database in an effort to mimic the human vision system. With more than 14 million labeled objects, from obsidian to orangutans to ocelots, the database has become a vital resource for computer vision researchers.

Stanford Researcher Finds Lots of Leaky Web Sites

By SOMINI SENGUPTA OCTOBER 11, 2011 6:32 PM 6

The Web is porous. Remarkable information trickles in from everywhere. It also sometimes spills out without its users knowing exactly where or how.

Take for instance these findings, released on Tuesday by computer scientists at Stanford University. If you type a wrong password into the Web site of The Wall Street Journal, it turns out that your e-mail address quietly slips out to seven unrelated Web sites. Sign on to NBC and, likewise, seven other companies can capture your e-mail address. Click on an ad on HomeDepot.com and your first name and user ID are instantly revealed to 13 other companies.

These findings, released by the Center for Internet and Society at Stanford Law School, are among the leaks found on 185 top Web sites. They serve to buttress what privacy advocates have long suspected: Web sites often are corruptible.
What will this course achieve?
Your experience in this course

Work on bleeding-edge topics now, rather than in two years

Fundamental research skills: read and write academic papers, formulate research questions, hands-on practice

Onramp to research in the department, and to research and advanced development in industry
197 vs. 197C

Both will have lecture here on Tues 10:30-11:20am

197

- Prereq: 106B
- Designed for any undergraduate who wants to try out CS research!
- Get matched to a research project, mentored by your CA
- Section: Thurs 10:30-11:20am.

197C

- Prereq: 106B + commitment from an external mentor for weekly meetings
- Designed for CURIS, PURE, and students with ongoing research projects
- No section. One weekly meeting with your research mentor, one weekly check-in meeting with course staff
Today

What is research, vs. industry?

How does this course work?

Research mindset
Course Staff!

197 & 197C
Instructor

197 & 197C
Co-Instructor

197
CA

197
CA

Sections:

AI & Sustainability

AI & CompBio

Human-Computer Interaction
Sean Liu

2015: BS, UC Berkeley EECS

Present: final-year PhD student, Stanford CS

Pronouns: she/her

Research Area: Computer Graphics, HCI

(Call me Sean)
Sean’s research history

<table>
<thead>
<tr>
<th>Undergrad</th>
<th>Geometric modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap year</td>
<td>Software Engineer</td>
</tr>
<tr>
<td>PhD</td>
<td>Image & Video editing tools</td>
</tr>
<tr>
<td></td>
<td>Visual guidance techniques</td>
</tr>
<tr>
<td></td>
<td>AI & Accessibility</td>
</tr>
</tbody>
</table>
Lauren Gillespie

2019: BS, Southwestern University
Computer Science, Chemistry

Present: fourth year PhD student, Stanford CS

Pronouns: she/her

Research Area: AI for Sustainability, Computer Vision
Lauren’s research history

Undergrad
- Neuroevolution
- High-performance computing
- AI-generated art

PhD
- AI + ecology / evolution
- Predicting species ranges from satellite imagery
- Detecting plants from space in Brazil!
Akshat Nigam

2020: University of Toronto

Present: Second year PhD student, Stanford CS

Pronouns: he/him

Research Area: Machine learning, Drug Discovery, Comp-Bio

https://akshat998.github.io/akshat98_webpage/
Akshat’s research history

- **Undergrad**
 - Year 2: Molecular representation
 - Year 3: Deep Learning properties
 - Year 4: Yay research work!

- **PhD**
 - CompBio + AI
Yujie Tao

2020: BA UNC-Chapel Hill
Journalism & Computer Science

2021: MS UChicago
Computer Science

Present: first-year PhD student, Stanford CS

Pronouns: she/her

Research Area: Human Computer Interaction
Yujie’s research history

Undergrad yr 1-3:

:) not doing research, exploring advertising, PM

Undergrad yr 4:

eye tracking, augmented reality

Master:

haptic interface, virtual reality

Ph.D.:

mobile health

perception + wellbeing

still exploring!
Computer science research

What is the goal of research?
Why has it driven major innovations in computing?
What separates research from advanced development?
A Tale of Three Turing Awards
Hennessy and Patterson: RISC

Computer architecture was increasing in complexity, in order to enable more and more advanced computation.

Everyone thought that increasingly powerful processors needed increasingly complicated instruction sets to take advantage of them.
Hennessy and Patterson: RISC

“No, let’s do it this way instead:” have a very simple instruction set. That way you can compare performance, optimize, and prevent errors.

This became known as Reduced Instruction Set Computer (RISC). It led to a sea change in architectures, and the founding of multiple major silicon valley companies.
Engelbart: interactive computing

When computers originated, they were used for, well, computing: calculating mathematical functions.

This meant that computers were seen as most appropriate for slow, batch interaction, shared by entire teams.
Engelbart: interactive computing

“No, let’s do it this way instead:” computing should be used as a tool for thought. We must move from batch-style computing to interactive computing.

His result was the “Mother of All Demos”: mouse, hypertext, bitmapped screens, collaborative software, and more.

This led to Xerox Star. Steve Jobs saw it, was wow’ed, and infused the ideas into the Mac.
The idea of neural networks had been around for fifty years, but unsuccessful. Major AI figures had trashed it, even proving that early versions had very limited expressiveness.

Instead, machine learning was based on other models, for example the support vector machine and graphical models. Neural networks did not perform well.
“No, let’s do it this way instead:” these networks learn extremely complex functions, so they need much more data than existing machine learning approaches, GPUs to train, and algorithms to enable them to learn more effectively.

Around 2010, these models began smashing records in speech and image recognition. They are now foundational to ML.
Not all research wins Turing Awards. But…

It all follows this same formula —

An implicit assumption: Industry and other researchers all thought one way about a problem

“No, let’s do it this way instead:” The researcher offered a new perspective that nobody had ever considered or made feasible before. They proved out their idea as the better approach.
And now, a definition.

Research introduces a fundamental new idea into the world.

Examples:

Simple instruction sets for complex computer architecture
Computing that is interactive, not batch
Algorithms needed to make deep learning effective

These ideas did not exist in any mature or well-articulated way before their creators developed them.

If the idea is already in the world, for example published by someone else, it is not considered novel, and thus not research.
Before: small computer vision datasets
After: huge computer vision dataset, and algorithms to utilize it

Before: programmers manually reserve resources for cloud computing
After: programmers provide needs, software allocates resources

Before: we think web tracking is isolated to the intended site
After: it's much leakier than we realized

Before: underwater robots should look and feel like boats
After: humanoid underwater robotics

Before: crowdsourcing is for workflows
After: crowdsourcing is for organizations
Research creates industry

Google
PageRank algorithm

Sun Microsystems
Stanford University Network workstation (SUNet)

SGI
Computer graphics architectures

Coursera
Online education

VMware
Computer virtualization
Industry and research
Industry vs. research

What makes other start-ups and industry different than research?

If the core idea already exists, but needs to be refined in order to see success… it might be important, but it’s not research.
Industry vs. research

Companies can and do engage in development that is research…

MapReduce and Spanner at Google

Kinect at Microsoft

…but typically companies are working to scale out ideas that exist.

Landay, 2000s: activity sensing
Credit because he developed the concept and popularized it

Apple, 2010s: Apple Watch
Credit because they engineered it to work and launched it
An incomplete list of research areas in computer science
Flavors of CS research

Computer science is field held together by a shared phenomenon of interest: computing.

This sets it apart from some other fields, which are drawn together by a shared theory or shared methodology. While this is a simplification, it is a helpful first cut:

- Psychology: methodology of randomized experiment
- Sociology: shared theories — functionalist perspective, conflict perspective, symbolic interactionist perspective
- Math: methodology of formal proof
- Anthropology: methodology of participant observation
Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Topic: artificial intelligence

Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Topic: computer systems

Architecture
Artificial intelligence
Computational biology
Computer graphics

Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction
Machine learning
Natural language processing

Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Topic: theory

Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Method: engineering

Architecture
- Artificial intelligence
- Computational biology

Computer graphics

Computer security

Computer systems
- Computer vision

Data science

Education

Human-computer interaction
- Machine learning
- Natural language processing

Networking

Operating/distributed systems

Programming systems/verification

Robotics

Theory
Method: probability and modeling

Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Method: formal reasoning and proof

Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Method: design

Architecture
Artificial intelligence
Computational biology
Computer graphics
Computer security
Computer systems
Computer vision
Data science
Education

Human-computer interaction
Machine learning
Natural language processing
Networking
Operating/distributed systems
Programming systems/verification
Robotics
Theory
Method: empirical measurement and hypothesis testing

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Human-computer interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial intelligence</td>
<td>Machine learning</td>
</tr>
<tr>
<td>Computational biology</td>
<td>Natural language processing</td>
</tr>
<tr>
<td>Computer graphics</td>
<td>Networking</td>
</tr>
<tr>
<td>Computer security</td>
<td>Operating/distributed systems</td>
</tr>
<tr>
<td>Computer systems</td>
<td>Programming systems/verification</td>
</tr>
<tr>
<td>Computer vision</td>
<td>Robotics</td>
</tr>
<tr>
<td>Data science</td>
<td>Theory</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
</tbody>
</table>

Method:
- Empirical measurement and hypothesis testing
Research mindset
Research is different than your usual coursework.

Coursework tends to be very clearly defined. Research tends to be exploratory and iterative.

You probably won’t know the right answer: if we knew whether it was going to work, it wouldn’t be research.
"I like" from research:

"The free-form structure of our project"

"The freedom to choose the questions and methods I find interesting"

"The independence I got in establishing a research direction"

"That I have had the opportunity to do a lot of self guided research and reading. I feel very free to shape parts of my learning and research experience."

"I wish" from research:

"That there was more structure or well-defined expectations."

"I had a clearer idea or more deliverables and felt the barrier of being unfamiliar with certain parts of the project or coming on late less."

"I had been able to narrow my scope a little earlier"

Research is a new and different skill. Embrace and navigate through the uncertainty.
How this course works
Learning goals

Understand the major research topics currently active in your area. Be able to read a research paper and perform a literature review in that area.

Apply vectoring and velocity skills for navigating the open-ended nature of research.

Design and execute an appropriate evaluation of your method.

Write a paper and engage in the peer review process.
Learning goals

197:

- Execute a first research project at the scale that can be submitted to a workshop or work-in-progress at a top-tier conference.

197C:

- Onramp for your CURIS / PURE / ongoing research project
Is this course right for me?

CS197 is the best fit if you’re…

Just starting your research journey

Done with CS 106B

CS197C is the best fit if you’re…

Starting out on research with a \{graduate student, post-doc, research staff, faculty\} mentor

Hoping for extra guidance and support through your project

It’s not the best fit if you’re…

Looking for an advisor for your own research idea

Just looking for research units (connect with a lab and take CS 195)
197 & 197C: Assignments

Assignments offer waypoints in support of the project.

Assignment 1: learning about the project area, and learning how to read a paper
Assignment 2: literature review
Assignment 3: introduction
&etc.

All details are at cs197.stanford.edu and cs197c@cs.stanford.edu
197: Research project

This class is structured around a quarter-long research project. The project is completed in groups of 3-4 within a section.

TAs will offer project options tailored to each section and the students’ interests within the section. These projects are designed to be accessible to you, of interest to the research community, and achievable within the timeline of the course.

“I have my own idea!”: mention it to your TA. We are unlikely to bend given those goals of accessibility, broader research interest, and achievability, but want to hear your ideas — it’s possible!
Form project teams and align with topics in section during Week 2. Each section has two beginner-level, one advanced project. After you join a section, your CA will match you to a project from a prepared list of options.

You will have some freedom to evolve the shape of that project…

…but we chose it to scope your project to something we know we can advise well, and that we think you can finish by the end of the quarter.
Small research milestone

- Can be preliminary work for upcoming CURIS internship
- Can be one “vector” to reduce risk in for current, ongoing project
- In weeks 1-2, work with your mentor to determine the milestone (<30 hours of work total, based on 3-unit course load)
 — more info to come!
197 & 197C: Grading

Grades will be returned as ✓-, ✓, ✓+

✓ - means “needs improvement”
✓ means “solid work”
✓ + means “wow, nice job!”

Rough benchmark: if you’re getting ✓ on every assignment, you’re on track for an A in the class.
I97 & I97C: Responding to TA

Your assignments are building toward a full research paper.

Your TA will give feedback on each submission. To encourage mastery learning, we expect that you will address that feedback in your final version (final talk, final paper).

Look for feedback to be tagged as **required**, **recommended**, or **FYI**.

If a section of the final paper improves on the original submission (e.g., Introduction assignment was a ✓, but the Introduction in the final paper is a ✓+), we will upgrade the original assignment grade.

Conversely, final submissions that do not address **required** feedback will be penalized in the final talk and final paper grades.
Attendance Policy

197:
Required weekly attendance:
 Lecture
 Team-only meeting
 Section; Advising meetings with CA

197C:
Required weekly attendance:
 Lecture
 Check-in meeting with staff
 Research meeting with mentor

One excused absence without penalty: must notify CA in advance and receive an acknowledgement.

No limit on absences due to uncontrollable circumstances (e.g., emergencies): must email staff ASAP.
Feedback: CS197 & 197C

Option 1: High-resolution course evaluation
- You will get pinged by email three times at random dates this quarter to answer a few short questions.

Option 2: Submit anonymous feedback anytime
- Course website: scroll to bottom for link to Google form

Please give us feedback! We want to improve the course!
What after 197 & 197C?

Our goal is for CS 197 to be an onramp for you to research in Computer Science. We will:

Perform outreach to faculty in CS or at Stanford to help introduce you so you can work on research projects after demonstrating excellence here

Support you in submitting your work to flagship conferences, and connect you with funding opportunities to travel to present the work
Your TODOs
Course Application!

Both Due 1 hour after class ends.

197: Section Application

Linked from cs197.stanford.edu or on Canvas.

- Rank your section preferences
- Decisions announced Wed
- If you do not get your first choice, you can sign up for the waitlist.

197C: Course application

Linked from cs197c.stanford.edu or on Canvas.

Register your mentor!
Assignment 1: Read a paper!

197:
- Individual assignment
- Based on your assigned section:
 - Read a paper
 - Starter task
 - Project ranking form

197C:
- Ask your mentor for a paper to read (due this Thurs at 5pm)
- Schedule weekly check-in meetings with Sean/Lauren
- Read a paper
Questions?
Computer Science Research

Slide content shareable under a Creative Commons Attribution-NonCommercial 4.0 International License.