Evaluation

CS 197 & 197C | Stanford University | Sean Liu & Lauren Gillespie
cs197 stanford.edu | cs197c stanford.edu

Slides adapted from previous iterations of the course by Michael Bernstein
Evaluation

CS 197 & 197C | Stanford University | Sean Liu & Lauren Gillespie
cs197.stanford.edu | cs197c.stanford.edu

Slides adapted from previous iterations of the course by Michael Bernstein
Due Thurs 5/18, 10am:

Assignment 6: Milestone

Mid-point Team Dynamics Form:
 All team members must fill out

Work on your research milestone!

Last week with no writing assignment
Previously...

Problem motivation
Set up the bit
Flip the bit
Instantiate the bit
Evaluation
Broader Implications
Introduction
Related work and Lit search
Vectoring & Velocity
“But how would we even evaluate that?”

People often rush to this question early on in ideation.

Today’s goal is to provide scaffolding for how to answer it.
Today’s big idea: evaluation

How do we get precise about what we need to evaluate for our project?

How do we design an appropriate evaluation?

How do we analyze our evaluation results?
Why perform evaluation in research?
Idea Shark Tank

Recall from Week 1 that research introduces a new idea into the world.

So... how do we know if that idea is worth adopting or paying attention to?
Standards of evidence

Every field has an accepted standard of evidence — a set of methods that are agreed upon for proving a point

- Medicine: Double-blind randomized controlled trial
- Math: Formal proof
- Applied Physics: Measurement
Standards of evidence

In computing, because areas use different methods, the standard of evidence differs based on the area (e.g., AI, computer graphics, HCI).

Your goal: convince an expert in your area.

So, use the methods appropriate to your area.
Designing an evaluation
Problematic point of view

“But how would we evaluate this?”

Why is this point of view problematic?

Implication: “I believe the idea is right, but I don’t believe that we can prove it.”

Implication: “Evaluation is distinct from the validity of the idea.”

Neither implication is correct. **If you can precisely articulate your idea and your bit flip, then you can design an appropriate evaluation. If you can’t precisely articulate your idea and your bit flip, then you can’t design an appropriate evaluation.**
Step 1: articulate your thesis

A much more productive approach is to derive an evaluation design directly from your idea.

What is the main thesis of your work?

(Lucky for you, you came up with this when writing the Introduction of your paper. It’s the topic sentence of your bit flip paragraph.)
Bit

Network behaviors are defined in hardware, statically.

Code compilers should utilize smart algorithms to optimize into machine code.

A minimum graph cut algorithms should always return correct answers.

Flip

If we define the behaviors in software, networks can become dynamic and more easily debuggable.

Code compilers will find more efficient outcomes if they just do monte carlo (random!) explorations of optimizations.

A randomized, probabilistic algorithm will be much faster, and we can still prove a limited probability of an error.
Step 2: map your thesis onto a claim

There are only a small number of claim structures implicit in most theses:

- **x > y**: approach x is better than approach y at solving the problem
- **∃ x**: it is possible to construct an x that satisfies some criteria, whereas it was not possible before
- **bounding x / measuring x**: approach x only works given certain assumptions
Bit
Network behaviors are defined in hardware, statically.

Flip
If we define the behaviors in software, networks can become dynamic.

Claim
∃ x: software-defined behaviors can be changed on the fly, whereas hardware cannot

Code compilers should utilize smart algorithms to optimize into machine code.

Code compilers will find more efficient outcomes if they just do monte carlo (random!) explorations of optimizations.

A minimum graph cut algorithms should always return correct answers.

A randomized, probabilistic algorithm will be much faster, and we can still prove a limited probability of an error.

x > y: monte carlo exploration will produce more optimized code than hand-tuned compilers

x > y: a randomized graph cut algorithm is faster and has bounded error
Discuss your claim with your team [4min]
Step 3: claims imply an evaluation design

Each claim structure implies an evaluation design

\(x > y \): given a representative task or set of tasks, test whether \(x \) in fact outperforms \(y \) at the problem

\(\exists x \): demonstrate that your approach achieves \(x \)

bounding \(x \): demonstrate bounds inside or outside of which approach \(x \) fails
<table>
<thead>
<tr>
<th>Flip</th>
<th>Claim</th>
<th>Implied evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>If we define the behaviors in software, networks can become dynamic.</td>
<td>(\exists x:) software-defined behaviors can be changed on the fly, whereas hardware cannot</td>
<td>Demonstrate that behaviors propagate, and which kind of behaviors can be authored</td>
</tr>
<tr>
<td>Code compilers will find more efficient outcomes if they just do monte carlo (random!) explorations of optimizations.</td>
<td>(x > y:) monte carlo exploration will produce more optimized code than hand-tuned compilers</td>
<td>Compare runtime of generated machine code against known best approaches</td>
</tr>
<tr>
<td>A randomized, probabilistic algorithm will be much faster; and we can still prove a limited probability of an error.</td>
<td>(x > y:) a randomized graph cut algorithm is faster and has bounded error</td>
<td>Prove runtime for randomized algorithm (vs. prior algorithm) and probability of error</td>
</tr>
</tbody>
</table>
Your turn!

Discuss the high-level design of your evaluation [4min]

Step 1: Articulate your thesis
Step 2: Map your thesis onto a claim
Step 3: Choose your evaluation design based on your claim

Claim Types:

\(x > y\): approach \(x\) is better than approach \(y\) at solving the problem

\(\exists x\): it is possible to construct an \(x\) that satisfies some criteria, whereas it was not possible before

\textbf{bounding} \(x\) / \textbf{measuring} \(x\): approach \(x\) only works given certain assumptions
Architecture of an Evaluation
Four constructs that matter

To develop your evaluation plan, you need to get precise about four components of your evaluation:

- Dependent variable
- Independent variable
- Task
- Threats
DV: dependent variable

In other words, what's the outcome you're measuring?

The choice of this quantity should be clearly implied by your thesis. It's often tempting to measure many DVs, and I'm not against doing so. However, one should be your central outcome, and the others auxiliary.
IV: independent variable

In other words, what determines what x and y are? What are you manipulating in order to cause the change in the dependent variable?

The IV is the construct that leads to conditions in your evaluation. Examples might include:

- Algorithm
- Dataset size or quality
- Interface
Task

What, specifically, is the routine being followed in order to manipulate the independent variable and measure the dependent variable?

We will perform 1-shot prediction of classes at the 25th percentile of popularity in ImageNet according to Google search volume.

Participants will have thirty seconds to identify each article as disinformation or not, within-subjects, randomizing across interfaces.

We will run a performance benchmark drawn from Author et al. against each system.
Threats

What are your threats to validity? In other words, what might bias your results or mean that you’re telling an incomplete story?

Might your selection of which classes to predict influence the outcome?

Are you running on particular cloud architectures that are amenable to, or not amenable to, your task?

Are your participants biased toward healthy young technophiles?

Do your participants always see the best interface first?
Threats

There are typically three ways to handle these kinds of issues:

1) Argue as irrelevant: yes, that bias might exist, but it’s not conceptually important to the phenomenon you’re studying and is unlikely to strongly effect the outcome or make the results less generalizable

2) Stratify: re-run your evaluation in each setting to see whether the outcomes change

3) Randomize: explicitly randomize (e.g., people) across values of the control variable. For example, randomize the order in which people see the interface.
Your turn!

Discuss the specific design of your evaluation [4min]

- Dependent variable
- Independent variable
- Task
- Threats
Model after other papers

There’s no need to start from scratch on this.

Your nearest neighbor paper, and the rest of your literature search, has likely already introduced evaluation methods into this literature that can be adapted to your purpose.

Start here: figure out what the norms are, and tweak them. Check with your CA!
Statistical Hypothesis Testing

a dramatically incomplete primer
Are you just lucky?

So your idea came out ahead. Great!

…but is that really true in general? Or did you just get lucky in the people you sampled, or in the inputs you sampled, and it could have easily come out a wash?

You live in one world in which the results came out the way they did. If we tried it in one hundred parallel worlds, in how many would it have come out the same way?
Statistical hypothesis testing is a way of formalizing our intuition on this question. It quantifies: in what % of parallel worlds would the results have come out this way?

This is what we call a **p-value**.

p<.05 intuitively means “a result like this is likely to have come up in at least 95% of parallel worlds”

Scientific communities have different standards for what level of p to use for statistical significance, especially in an era of big data. Many still use .05. It’s a topic for another class.
Step 1: don’t run the stats

Instead, visualize your results. Create graphs, report descriptive statistics.

Make sure to include error bars: they give you an intuitive sense of how much variation there is around that mean, which can hint you to outliers.

Rushing first to statistics often fails to identify outliers and other weird artifacts that can mess with your stats.
Step 2: learn the stats

Know what you are testing and the assumptions that your test makes. This is outside the scope of CS 197, so I recommend working with your TA. For example, you might consider:

- Categorical data? Chi-square
- Continuous data with two conditions? t-test
- Continuous data with > two conditions? ANOVA with posthoc tests
Assignment 7 (what!?)

Assignment 7 is your evaluation plan.

We are launching Assignment 7 early! It’s not formally due until Week 8.

But, some projects, which are more study- or measurement-oriented, need more lead time to complete their evaluation. If you are in this set, turn this assignment in early so that you can proceed with data collection.
Assignment 7

197

Due next Thurs 5/26:
Evaluation plan

197C

Due next Thurs 5/26:
Proposed solution & Evaluation Plan
Reminder:
Submit your attendance on Canvas!
Evaluation

Slide content shareable under a Creative Commons Attribution-NonCommercial 4.0 International License.