CS205 – Class 10

Covered in class: All
Reading: Shewchuk Paper on course web page

1. Let’s go back to linear systems of equations Ax=b.
 a. Assume that A is square, symmetric, positive definite
 b. If A is dense we might use a direct solver, but for a sparse A, iterative solvers are better as they only deal with nonzero entries
 c. Quadratic Form \(f(x) = \frac{1}{2} x^T A x - b^T x + c \)
 d. If A is symmetric positive definite then f(x) is minimized by the solution x to Ax=b!
 i. \(\nabla f(x) = A x + \frac{1}{2} A^T x - b = A x - b \) since A is symmetric
 ii. \(\nabla f(x) = 0 \) is equivalent to Ax=b
 1. this makes sense considering the scalar equivalent
 \(f(x) = \frac{1}{2} ax^2 - bx + c \) where the line of symmetry is \(x = b/a \)
 which is the solution of ax=b and the location of the maximum or minimum
 iii. The Hessian is H=A, and since A is symmetric positive definite so is H, and a solution to \(\nabla f(x) = 0 \), or Ax=b is a minimum
 1. note that symmetric negative definite A lead to maxima
 2. in the scalar case \(f(x) = 1/2 ax^2 - bx + c \), H=[a] and when a>0 the parabola is concave up and \(x = b/a \) represents a minima
 3. Even if A is not symmetric, the Hessian \(H = \frac{1}{2}(A + A^T) \) is symmetric itself, as expected since the quadratic function we considered has continuous second derivatives
 iv. Moreover, since H=A is constant, f(x) has a bowl shape everywhere –

\[
\begin{align*}
\text{Consider this in 1D. We have} & \\
f(x) &= \frac{1}{2} ax^2 - bx + c = \frac{1}{2} ax^2 - bx + c \\
f'(x) &= ax - b
\end{align*}
\]

minimum is \(x = b/a \). Then the second derivative sign is analogous to
the positive or negative definiteness of the general matrix case. Here

vi. \(f(x) = \frac{1}{2} \cdot 2 \cdot x^2 + 3x - 10 \) minimum is at \(b/a = 3/2 \).

2. Steepest Descent – for \(Ax = b \)
 a. We look in the direction \(-\nabla f = b - Ax = r\). As we have shown, the residual direction is the steepest descent direction!
 b. Another way to think about the residual is \(r = b - Ax = \)
 \(= Ax_{\text{exact}} - Ax = A(x_{\text{exact}} - x) = -Ae \) where \(e = x - x_{\text{exact}} \) is the error. Thus, the residual is the error transformed by \(A \) into the space where \(b \) resides.
 c. \(-\nabla f = r = -Ae\) so the search direction is predicted by \(r \), not by \(e \), whereas \(e \) is the correct search direction. Note that in 1d the directions of \(e \) and \(r \) are coincident, but in multi-d this problem manifests itself. The residual may or may not be a good measure of error. Consider a 1D example with \(r = ae \). Suppose \(r = 10^{-8} \). Then \(e \) could be arbitrarily large as we make \(a \) smaller (where \(a \) is the concavity).
 d. Recall that we choose \(\alpha \) using a 1D minimization problem
 i. The solution occurs where the new \(\nabla f(x) \) is orthogonal to the search line,
 1. i.e. go in the direction until you reach a spot where direction is tangent to level curves
 2. i.e. \(\perp \) to \(\nabla f(x) \)
 3. i.e. \(\nabla f(x) \perp s_k \) where \(s_k \) is search direction at iteration \(k \)
 4. i.e. \(\nabla f(x) \cdot s_k = 0 \)
 5. i.e. \(\nabla f(x_{k+1}) \cdot r_k = 0 \)
 6. i.e. \(r_{k+1} \cdot r_k = 0 \).
 ii. If we knew the absolute error \(e_k \), we could use it to write:
 \(x_{k+1} = x_k + s_k \alpha = x_k - e_k \alpha = x_k - (x_k - x_{\text{exact}}) \alpha \) gives \(x_{k+1} = x_{\text{exact}} \) for \(\alpha = 1 \).
 iii. However, using \(r_{k+1} \cdot r_k = 0 \) implies \((b - Ax_{k+1}) \cdot r_k = 0 \) or
 \((b - A(x_k + r_k \alpha)) \cdot r_k = 0 \) or \((b - Ax_k) \cdot r_k - (Ar_k \alpha) \cdot r_k = 0 \) or
 \(r_k \cdot r_k - \alpha r_k \cdot Ar_k = 0 \) so that \(\alpha = \frac{r_k \cdot r_k}{r_k \cdot Ar_k} = \frac{r_k^T r_k}{r_k^T Ar_k} \).
 e. So, the steepest descent method applied to the quadratic form is \(r_k = b - Ax_k \),
 \(\alpha = \frac{r_k^T r_k}{r_k^T Ar_k} \), \(x_{k+1} = x_k + r_k \alpha \); this can also be seen as solving \(Ax = b \).
f. Sometimes people iterate on the residual directly using
\[r_{k+1} = b - Ax_{k+1} = b - A(x_k + r_k \alpha) = r_k - \alpha Ar_k \]
to find the \(r_k \), while still updating along the way (although \(x \) no longer feeds back into the algorithm)

i. The advantage of this is that we no longer need the extra multiplication by \(A \) in \(r_k = b - Ax_k \). Both the computation of \(\alpha = \frac{r_k^T r_k}{r_k^T Ar_k} \) and
\[r_{k+1} = r_k - \alpha Ar_k \]
use the same \(Ar_k \)

3. Steepest Descent for Ax=b (continued)
 a. Suppose that our initial guess is such that the error term, \(e = x - x_{\text{exact}} \), is an eigenvector of the matrix \(A \)
 i. Then \(r = -Ae = -\lambda e \)
 ii. \[x_{k+1} = x_k + \left(\frac{r_k \cdot r_k}{r_k \cdot Ar_k} \right) e = x_k + \left(\frac{r_k \cdot r_k}{r_k \cdot Ar_k} \right) (-\lambda e) = x_k + \left(\frac{r_k \cdot r_k}{r_k \cdot Ar_k} \right) e \]
 Then \(x_{k+1} = x_k + \left(\frac{r_k \cdot r_k}{r_k \cdot Ar_k} \right) e = x_k + \left(\frac{r_k \cdot r_k}{r_k \cdot (-\lambda e)} \right) e = x_k - e = x_{\text{exact}} \) and we’re done!
 iii. In this case, we lie exactly on one of the coordinate axis of the ellipsoid and \(\nabla f \) and \(e \) point in the same direction:
\[-\nabla f = r = -Ae = -\lambda e \]
 b. When all the eigenvalues are equal, we have circles instead of ellipses. Then \(\nabla f \) and \(e \) always point in the same direction, and the steepest descent method converges in one iteration
 c. In general, the error is a linear combination of the eigenvectors
 i. I.e., we do not lie on the principle axis of the ellipse
 ii. I.e. \(\nabla f \) and \(e \) point in different directions.