CS205 – Class 6

Reading: Heath 3.6 (p137-143), 4.7 (p202)

Singular Value Decomposition (SVD)

1. The Singular Value Decomposition is an eigenvalue-like decomposition for square $m \times n$ matrices. It has the form $A = U \Sigma V^T$ where U is an $m \times m$ orthogonal matrix, V is an $n \times n$ orthogonal matrix, and Σ is an $m \times n$ diagonal matrix with positive diagonal entries that are called the *singular values* of A. The columns of U and V are the *singular vectors*.
 a. Introduced and rediscovered many times: Beltrami in 1873, Jordan in 1875, Sylvester in 1889, Autonne in 1913, Eckart and Young in 1936.
 b. Pearson introduced principal component analysis (PCA) in 1901. It uses SVD.
 c. Numerical work by Chan, Businger, Golub, Kahan, etc.

2. The singular value decomposition of $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$ is given by

 $\begin{bmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .028 & .664 & -.509 \\ .750 & -.371 & -.542 & .079 \end{bmatrix} \begin{bmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{bmatrix}$.

 a. The singular values are 25.5, 1.29, and 0. The singular value of 0 indicates that the matrix is rank deficient. However, even a “small” singular value could indicate a “zero” and a rank deficient matrix.

3. The singular values of A are the non-negative square roots of the eigenvalues of the symmetric positive semi-definite $A^T A$ (and also $A A^T$), and the columns of U and V are the orthonormal eigenvectors of $A A^T$ and $A^T A$ respectively. (Note the strong connection to the normal equations and least squares problems).

4. The condition number of a matrix A with respect to the Euclidean norm is $\sigma_{\text{max}} / \sigma_{\text{min}}$.
 a. For a square matrix, the condition number measures the closeness to singularity. For a rectangular matrix, the condition number measures the closeness to rank deficiency.

5. The rank of a matrix is equal to the number of nonzero singular values that it has. However, if values are “close” to “zero” then the condition number $\sigma_{\text{max}} / \sigma_{\text{min}}$ can be very high essentially making these numbers “zero” as far as rank is concerned.

6. The “pseudo-inverse” of a matrix A is defined by $A^+ = V \Sigma^+ U^T$ where Σ^+ is obtained from Σ by replacing all “nonzero” σ_i with $1/\sigma_i$, and leaving all the zero entries identically zero.
 a. If A is square and nonsingular ($\sigma_i \neq 0$), $A^+ = A^{-1}$.
b. The least squares solution to \(Ax=b \) is \(x = A^+b = V\Sigma^+U^Tb = \sum_{\sigma_i>0} \left(u_i^Tb / \sigma_i \right) v_i \). (Note \(\Sigma^+ \) contains a transpose)

i. Moreover, small \(\sigma_i \) can be dropped from the summation stabilizing the solution, and effectively improving the condition number. This amounts to “dropping columns” from the original matrix \(A \).

7. \(A = U \sum V^T = \sum_i \sigma_i u_i v_i^T \).

a. Note that “zero” or “small” \(\sigma_i \) produce terms that contribute little to the sum, and that large \(\sigma_i \) produce terms that contribute significantly to the sum.

b. If the “zero” or “small” \(\sigma_i \) are omitted from the summation, one obtains a matrix with lower rank. For example, if only the first \(k \) terms are summed, the result has rank \(k \).

i. Moreover, it can be shown that this new rank \(k \) matrix is the closest rank \(k \) matrix to \(A \) in both the L2 and the Frobenius norm.

ii. This is the key idea in PCA, clustering/data mining algorithms, etc.

8. The columns of \(V \) corresponding to “zero” singular values form an orthonormal basis for the null space of \(A \).

a. The remaining columns of \(V \) form an orthonormal basis for the space perpendicular to the null space of \(A \).

9. The columns of \(U \) corresponding to the “nonzero” singular values form an orthonormal basis for the range of \(A \).

a. The remaining columns of \(U \) form an orthonormal basis for the space perpendicular to the range of \(A \).

Numeric Linear Algebra Summary

When your matrix \(A \) is:

1. Non-singular use LU decomposition.
2. Over determined use QR with Householder.
3. Under determined use SVD. This means some of your variables don’t have any meaning on your solution, i.e. where you parked your car.
4. Principal Component Analysis
 a. PCA let’s you throw away 10,000 terms and keep 6.
 b. But **don’t** use the SVD (too slow and gives you everything)! Instead, find your singular values (i.e. \(\sigma_i \)) using the power method. Then can get eigenvectors of \(A^TA \) and \(AA^T \) using division.