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Chapter 7

Mechanism Design

7.1 Overview

In the preceding chapters we presented essential elements of game theory. Through-
out the discussion the issue was framed as follows. Given an interaction among
a set of agents, first we need to decide how to represent this interaction, and
second, given this representation, we need to predict or prescribe the outcome of
this interaction. The representations included the normal and extensive forms
(as well as several others), and the analysis consisted of investigating the Nash
equilibrium and various refinements of it. Essential, however, was the we started
with a given strategic interaction.

We now turn to what is sometimes called “inverse” game theory. Rather
than investigate a given strategic interaction, we start with certain desired be-
haviors on the part of agents, and ask what strategic interaction among these
agents might give rise to these behaviors. Roughly speaking, from the technical
point of view this will translate to the following: We will assume unknown indi-
vidual utility functions, and ask whether we can design a game such that in the
equilibrium of that game the agents exhibit a certain desired behavior no mat-
ter what their secret utility functions actually are. This area, called mechanism
design or implementation theory, is perhaps the most “computer scientific” part
of game theory, since it concerns itself with designing effective protocols for dis-
tributed systems. The key difference from the traditional work in distributed
systems is that in the current setting the distributed elements are not necessar-
ily cooperative, and must be motivated to play their part. For this reason one
can think of mechanism design as an exercise in “incentive engineering.”

Mechanism design has many applications. The most famous of these is the
design of auctions, such as the popular online consumer auctions or the more
somber government auctions of electromagnetic spectrum. We return to the
topic of auctions later, but here are two different examples that illustrate the
problem of mechanism design.
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154 CHAPTER 7. MECHANISM DESIGN

Example 7.1.1 Strategic Voting You are taking four children – Will, Liam,
Vic and Ray – to play in a schoolyard, and need to decide on what sport they
will all play. You can choose among basketball, soccer, and volleyball. You
don’t know the kids well, so you ask them all to tell you their preferred choice,
announcing (reasonably enough) that you will pick the sport that the majority
of kids voted for (breaking ties at random). What will happen?

Consider the following situation, in which the true preferences of the kids are
as as follows (each column describes the preferences of the child in descending
order):

Will Liam Vic Ray
1 V V S B
2 B B B S
3 S S V V

Will, Liam, and Vic are regular kids and tell you their true preferences. But
little Ray goes through the following reasoning process. Since he does know his
friends, he knows what sport each will vote for. He thus knows that if he votes
for his true passion – basketball – he’ll end up playing volleyball with certainty.
So he votes for soccer, ensuring that he has a 50% probability of avoiding the
detested volleyball.

Is there anything you can do to prevent such manipulation by little Ray?

A rather different example is taken from the networking domain.

Example 7.1.2 Shortest-Path Routing With Selfish Agents You wish to
route a message between two nodes in a communication network. Each link in
the network is owned by a different company, which experiences a certain cost
for transmitting the message. Assume that this cost is private knowledge of the
companies, and that they wish to maximize their revenues. You wish to route
the message along the least-cost route (note that this is different from wishing
to pay the least amount of money; you care about the total costs of the com-
panies, not your total expenditures). Your task would be easy if the companies
revealed their true costs, since then you’d need to compute a simple shortest
path in a weighted graph; but how can you ensure that the companies indeed
reveal the truth? [[[expand example]]]

The remainder of this chapter is organized as follows. In the next section,
we present a formal model for the mechanism design problem, and present some
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general mechanism design results. In Section ??, we discuss auctions, which are
a key application of mechanism design. Finally, in Section 7.5.3 we discuss some
other applications of mechanism design in computer science.

7.2 A Formal Model And Some General Results

Before we begin to answer the questions posed in the preceding examples, let
us set things up formally.

Definition 7.2.1 (Mechanism Design Problem) A mechanism design prob-
lem M is a tuple (N,O, U,C), where

• N is a set of agents,

• O is a set of outcomes,

• U = U1 × · · · × Un, where Ui is the set of possible utility functions for
agent i ∈ N . Each ui ∈ Ui, ui : O → <, is a possible utility function for
agent i,1 and

• C : U → 2O is a function mapping agents’ utilities to subsets of outcomes,
those desired by the mechanism designer.

We can use this problem to formalize the voting example above. In this
problem, there are four agents, three possible outcomes (soccer, volleyball and
basketball), the set of utility function for each child consists of all possible
mappings from outcomes to the real numbers, and for every 4-tuple of utility
functions the desired outcomes consist of those in which the outcome has the
maximal utility for the largest set of agents. In the particular instance of utility
examples given there (which is really a set of instances, since we specify only
the qualitative preferences of each child and not the numerical utility), there is
one desired outcome – volleyball.

Now that we have a definition of a mechanism-design problem, we need to
define a mechanism.

Definition 7.2.2 (Mechanism) Given a mechanism design problem M = (N,O, U,C),
a mechanism for M is a pair (A,µ), where

• A = A1×· · ·×An, where Ai is the set of actions available to agent i ∈ N ,
and

• µ : A → Π(O) maps each action profile to a distribution over outcomes.
For convenience, when µ(a)(o) = 1 we write µ(a) = o.

1The function ui in an instance of the problem is often called the agent’s type.
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Note that a problem and a mechanism as above together define a set of
games (N, A,O, µ, u), one for each u ∈ U .2

Informally speaking, a solution to a mechanism design problem is a mecha-
nism which always defines a game in which every equilibrium necessarily leads
to one of the desired outcomes. More formally, we have the following definition.

Definition 7.2.3 (Mechanism Design Solution) Given a mechanism design
problem M = (N,O, U,C), a mechanism (A,µ) for M is a Nash-solution of M
iff it is the case that for any preference profile u ∈ U and action profile a∗ ∈ A,
if a∗ is a Nash equilibrium of the game (N,A, O, µ, u) then for all o ∈ O, if
µ(a∗)(o) > 0 then o ∈ C(u).

In the sports example above, the pair consisting of “each child votes one
choice” and “the sport selected is one with most votes” is a well-formed mech-
anism for the problem, since it specifies the actions available to each child and
the outcome depending on the choices made. But it is clearly not a solution,
since in the particular instance described there it is an equilibrium for all kids
but Ray to vote their first choice, and for Ray to vote his second, leading to a
50% probability that the outcome will not be the one desired by the mechanism
designer.

The above definition is specific to the Nash equilibrium, but clearly we could
define similar definitions in terms of alternative solution concepts. In general,
given a mechanism design problem M and a solution concept S, we will speak
about a mechanism (A,µ) forming an S-solution of M , or an S-implementation
of M . When talking about an S-solution, we will assume that the mechanism
always gives rise to games in which that solution exists. Of course, when S is
the Nash equilibrium, this is not a substantive assumption, since Nash equilibria
are guaranteed to exist. But it is a substantive assumption when speaking, for
example, about dominant-strategy solutions.

Finally, we need to extend the concept of mechanism design to Bayesian
settings. Given our understanding of Bayesian games (see Section 5.6), this
extension is also straightforward. A Bayesian mechanism design problem is
a distribution over a set of utility functions and a partition over this set for
each agent; a mechanism remains as before, but it gives rise to a Bayesian
game instead of a normal form game. Finally, a mechanism is a solution to the
problem if the Bayes-Nash equilibria of any (Bayesian) game it creates always
lead to desired outcomes.

A classical example of Bayesian mechanism design is auction design. While
we devote a more lengthy discussion to auctions in Section ??, the basic idea
is as follows. The designer wishes (for example) to ensure that the bidder with
the highest valuation for a given item win the auction, but the valuations of the
agents are all private. The outcomes consist of allocating the item (in the case of
a simple, single-item auction) to one of the agents, and having the agents make

2Note that this is more general than the formulation of a game presented in Chapter 5;
it does not equate action vectors directly with outcomes but rather maps the former to a
distribution over the latter.



7.2. A FORMAL MODEL AND SOME GENERAL RESULTS 157

or receive some payments. The auction rules define the actions available to the
agents (the “bidding rules”), and the mapping from action vectors to outcomes
(“allocation rules” and “payment rules”: who wins and who pays what as a
function of the bidding). If we assume that the valuations are drawn from some
known distribution, each particular auction design and particular set of agents
define a Bayesian game, in which the signal of each agent is (for example) his
own valuation. A typical goal of the auction designer, in this case, is to ensure
that in all such games the the winner of the auction is the person with the
highest valuation.

With this we are ready for some of the main results in the theory of mecha-
nism design.

7.2.1 A Positive Result: The Revelation Principle

A direct mechanism is one in which the only action available to agents is to
announce a preference function; that is, Ai = Ui. For example, in a simple,
single-item auction setting, the only action available is to announce one’s value
for the item. Since the set of actions is the set of all preference functions,
agents may lie and announce a preference function ûi that is different from
his true preference function ui.3 A direct mechanism is said to be truthful or
incentive compatible4 if, for any preference vector u, in the game defined by
the mechanism it is a dominant strategy for every agent i to announce his true
preference function, such that ûi = ui. Sometimes the term used is incentive
compatibility in dominant strategies, to distinguish from the case in which the
agents are truthful only in equilibrium (called Nash incentive compatibility.)

Of course, it may not be possible to find a truthful solution for every mech-
anism design problem. The following powerful result, however, assures us that
under many conditions we will be able to find one.

Theorem 7.2.1 (Revelation Principle) Given a mechanism design problem
M , if there exists a dominant-strategy (resp., Nash) solution to M then there
exists a solution to M that is direct mechanism that is incentive compatible in
dominant strategies (resp., Nash incentive compatible).

In other words, any solution to a mechanism design problem can be converted
into one in which agents always reveal their true preferences. The proof is by
construction, and can be explained informally. The new mechanism accepts the
agents’ truthful utility functions, and “lies for them.” That is to say, its mapping
to outcomes mimics the mapping that would occur had the old mapping been
in place and the agents would bid their dominant strategies (or their Nash
equilibria strategies). This is arguably the most powerful result in mechanism
design. It means that, while one might have thought a priori that a particular
mechanism design problem calls for an arbitrarily complex strategy space, in

3The action chosen is sometimes called the revealed type, to be contrasted with the agent’s
true type.

4Some authors also use the term strategy proof.
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fact one can restrict one’s attention to direct mechanisms – and even incentive
compatible ones.

7.2.2 A Negative Result:
The Gibbard–Satterthwaite Theorem

We use the term dictatorial to describe mechanisms that always adopt the
preferred outcome of one particular agent, regardless of the preference vector.
While such mechanisms seem undesirable, the following result states that under
certain conditions truthful mechanisms are necessarily dictatorial.

Theorem 7.2.2 (Gibbard-Satterthwaite Impossibility Theorem) Given
a mechanism design problem M = (N, O, U,C) such that

• |O| ≥ 3, and

• C is an onto function; that is, for all outcomes o ∈ O there exists an agent
preference profile u ∈ U such that C(u) = {o},

then if a dominant-strategy solution to M exists then the solution (and hence
C) are dictatorial; that is, there exists i ∈ N such that for all u ∈ U it is the
case that C(u) = arg maxo∈O ui(o).

7.2.3 A Positive Result:
The Vickrey-Clarke-Groves Mechanism

If we are to design a truthful mechanism that is not dictatorial, we are going
to have to relax some of the conditions of the Gibbard-Satterthwaite theorem.
The obvious candidate for relaxation is the the final condition, that the mech-
anism be onto. And indeed when we do that we are still left with a vast class
of mechanisms, including a very general one called the Vickrey-Clarke-Groves
mechanism, or VCG for short. We begin by defining a class of mechanism design
problems called the quasi-linear problems.

Definition 7.2.4 (Quasi-Linear Problem) A quasi-linear mechanism design
problem is a mechanism design problem (N,O, U,C) with the following struc-
ture:

• O = X ×<n, where X is some finite set.

• For each agent i ∈ N and each ui ∈ Ui there exists a function vi : X → <
such that the utility for each agent i is quasi-linear: ui(x, r1, . . . , rn) =
vi(x) + ri. For slight abuse of notation, we expand the domain of vi to
include outcomes as follows: vi((x, r1, . . . , rn)) = vi(x).

• The goal of the designer is to maximize the so-called social welfare:

C(u) = arg max
o∈O

∑

i∈N

ui(o)
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Intuitively, X represents a set of non-monetary outcomes (for example, the
allocation of an object to one of the bidders in an auction), and ri is the (pos-
sibly negative) payment received by agent i (for example, a payment to the
auctioneer). The quasi-linearity assumption means that the agent’s overall util-
ity can is the sum of his value for the non-monetary outcome (for example, his
value for the auction item) and his payment. Maximizing social welfare means
maximizing the sum of the total utilities of the agents; notice that, under the
assumption of quasi-linearity, payments among agents don’t impact the social
welfare.

Technically speaking, the quasi-linear problem fixes the set of agents. How-
ever we generally consider families of quasi-linear problems, for any set of agents.
For example, consider a voting game of the sort discussed earlier. You would
want to be able to speaking a voting problem and a voting solution in a way
that is not dependent on the number of agents. So in the following we assume
that a quasi-linear problem is still defined when any one agent is taken away.
In this case the set of non-monetary outcomes must be updated (for example,
in an auction setting the missing agent cannot be the winner), and is denoted
by O−i. Similarly, the utility functions ui and the choice function C must be
updated accordingly.

Definition 7.2.5 (VCG Mechanism) Given a quasi-linear mechanism de-
sign problem M = (N, O, U,C) and functions vi such that for each agent i ∈ N
and outcome o ∈ O ui(o) = vix + ri, the VCG mechanism for M is (A,µ) such
that A = U , and µ(û) = (x, p1, . . . , pn), where

• x = arg maxx∈X

∑
i∈N v̂i(x), and

• pi =
∑

j 6=i v̂j(x)−maxo∈O−i

∑
j 6=i v̂j(o)

In other words, VCG is a direct mechanism in which agents can bid any
valuation function v̂ (and thus any utility function û ∈ U , given the quasi-linear
structure). The center then optimizes the choice of outcome assuming that the
agents disclosed their true utility function, and charges agent i his “social cost”:
the difference between the declared social welfare of the remaining agents in
the current situation, and their declared welfare in the hypothetical situation in
which agent i did not exist.

The remarkable property of the VCG mechanism is that it is a dominant-
strategy solution to the quasi-linear problem:

Theorem 7.2.3 Given a quasi-linear mechanism design problem M , the VCG
mechanism for M is a direct dominant-strategy solution to M .

In other words, in the VCG mechanism it is a dominant strategy for agents
to report their true utility functions. Mysterious as this may sound, it is an
immediate consequence of the definitions. Recall that the VCG mechanism
chooses the x which maximizes the quantity

∑

i∈N

v̂i(x) = v̂i(x) +
∑

j 6=i

v̂j(x)
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where v̂i is the declared utility function of agent i. At the same time, the true
utility function of agent i is

vi(x) +
∑

j 6=i

v̂j(x)− max
o∈O−i

∑

j 6=i

v̂j(o)

Agent i has no control over the third term maxo∈O−i

∑
j 6=i v̂j(o), and can only

influence the remaining sum vi(x) +
∑

j 6=i v̂j(x). But this is identical to the
term maximized by the mechanism, other than the use of the function v̂i by
the mechanism and vi by the agent; thus the agent can only lose by selecting
v̂i 6= vi.

7.2.4 A Negative Result: The Myerson–Satterthwaite The-
orem

The VCG mechanism seems almost too good to be true; where’s the catch?
We will discuss some computational catches in the section in which we discuss
combinatorial auctions, but here is one economic shortcoming. Recall that a
mechanism is incentive compatible (in dominant strategies) if it leads to a game
in which it is a dominant strategy for each agent to disclose his true utility, and
that a mechanism is (economically) efficient if it always maximized the sum of
utilities for all agents. In addition, a mechanism for a quasi-linear problem is
said to be budget balanced if the sum of payments to the agents is always exactly
zero (thus in a budget-balanced auction the auctioneer neither makes nor loses
money). The following theorem shows that these three conditions cannot be
achieved simultaneously.

Theorem 7.2.4 (The Myerson-Satterthwaite Impossibility Theorem)
No mechanism is simultaneously incentive compatible, efficient, and budget bal-
anced.

In particular, it follows that the VCG mechanism cannot be all three; indeed,
is is incentive compatible and efficient, but not budget balanced.

7.3 A Key Application: Auctions

Auctions constitute an interesting and well known application of mechanism
design. In the most familiar types of auction there is one good for sale, one
seller, and multiple potential buyers. Each buyer has his own valuation for the
good, and each wishes to purchase it at the lowest possible price. Our task is to
design a protocol for this auction that satisfies certain desirable global criteria.
For example, we might want an auction protocol that maximizes the expected
revenue of the seller. Or, we might want an auction that is economically efficient,
that is, one that guarantees that the potential buyer with the highest valuation
ends up with the good.
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The auction setting is important because auctions are widely used in con-
sumer, corporate, and computer science settings. Millions of people use auctions
daily on Internet consumer websites to trade goods. More complex types of auc-
tions have been used by governments around the world to sell important public
resources such as access to electromagnetic spectrum. Indeed, all financial mar-
kets constitute a type of auction (one of the family of so-called double auctions).
Auctions are also often used in computer science applications to efficiently allo-
cate bandwidth and processing power to applications and users.

In the remainder of this section we first survey the space of auction types, go
on to discuss how auctions are modelled as (Bayesian) games, and then present
some of the central results of auction theory.

7.3.1 Auction Types

It is important to realize that the most familiar type of auction – the ascending-
bid, English auction – is a drop in the ocean of auction types. Indeed, in a
precise sense, there is an infinite number of auction types. To give a feel for this
broad space, we start with a taxonomical survey of several auction families, and
conclude with a broader discussion of the space of auction

The taxonomy of auction types we discuss is depicted graphically in Fig-
ure 7.3.1.

auction
one sided

single dimensional
sealed bid

1st-price, 2nd-price, etc
open outcry

English
Dutch
Japanese

multi-dimensional
multi-attribute
multi-good

combinatorial
composite

two sided ("double auction")
continuous double auction (CDA)
periodic double auction (call market)

Figure 7.1: A partial auction taxonomy.

Let us say a few words about this taxonomy; we will concentrate primarily
on one-sided auctions5.

5It must be emphasized again that this taxonomy is not exhaustive; in particular, there
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Single-sided, single-dimensional auctions

In a single dimensional setting there is only one type of good for sale. There
could be only one copy of the item, in which the auction is called single unit, or
multiple interchangeable items, in which case the auction is called multi-unit. In
both cases, in a single-dimensional auction bidders care only about the number
of goods they receive and the price they pay, and their bids can mention only
price and (in the case of multi-unit auctions) quantity.

The best known one-sided, single-dimensional auction families are the En-
glish auction and the sealed-bid auction, followed closely by the Dutch and
Japanese families. Let us briefly review each of them.

The English auction is perhaps the best-known family of auctions, since in
form or another they are used in the venerable old-guard auction houses as well
as most of the online consumer auction sites. In a single-unit English auction,
the auctioneer sets a starting price for the good, and agents then have the option
to announce successive bids, each of which must be higher than the previous
bid (usually by some minimum increment set by the auctioneer). The rules for
when the auction closes vary; in some instances the auction ends at a fixed time,
in others it ends after a fixed period during which no new bids are made, in
others at the latest of the two, and in still other instances at the earliest of the
two. The final bidder, who by definition is the agent with the highest bid, must
purchase the good for the amount of his final bid.

Multi-unit English auctions are less straightforward. For one thing, they vary
in the payment rules. If there are 3 items for sale, the top 3 bids win one item
each. In general, these bids will be for different amounts; the question is what
each bidder should pay. In the pay-your-bid scheme (the so-called discriminatory
pricing rule) each of the three top bidders pays a different amount, namely his
own bid. In the uniform pricing rule all winners pay the same amount; this is
usually set to be lowest among the winning bids (though it can be others; for
example, the highest among the losing bids).6

The extension of the English auction to the multi-unit case is mostly straight-
forward; a bid for five units at $10/unit is interpreted as five different bids. One
subtlety that arises regards minimum increments. Consider the following ex-
ample, in which there is a total of 10 units available, and two bids: one for 5
units at $1/unit, and one for 5 units at $4/unit. What is the lowest acceptable
next bid? Intuitively, it depends on the quantity – a bid for 3 units at $2/unit
can be satisfied, but a bid for 7 units at $2/unit cannot. Of course, the latter
bid can be partially satisfied – is that allowed, or is the bid for 7 units all-or-
nothing? This must be specified, but note that all-or-nothing bids give rise to
subtle tie-breaking problems. For example, imagine that at the end of the pre-
vious auction the highest bids are as follows, all of them all-or-nothing: 5 units

certainly exist two-sided combinatorial auctions, as well as auctions that fall outside this
taxonomy.

6Confusingly, the English auction in conjunction with the uniform pricing rule is sometimes
called Dutch auction. This is a practice to be discouraged; the correct use of the term is in
connection with the descending outcry auction, discussed below.
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for $20/unit, 3 units for $15/unit, 5 units for $15/unit, and 1 unit for $15/unit.
Presumably the first bid is satisfied, as well as two of the remaining three – but
which? Here one sees different tie-breaking rules – by quantity (larger bids win
over smaller ones), by time (earlier bids win over later bids), and combinations
thereof.

The Japanese auction7 is similar to the English auction in that it is ascending-
bid auction, but different otherwise. Here the auctioneer sets a starting price
for the good, and each agent must choose whether or not to be “in”, that is,
whether they are willing to purchase the good at that price. The auctioneer
then calls out successively increasing prices in a regular fashion8, and after each
call each agents must announce whether they are still in. When they drop out
it is irrevocable, and they cannot re-enter the auction. The auction ends when
there is exactly one agent left in; the agent must then purchase the good for the
current price.

The extension of the Japanese auction to the multi-unit case is again mostly
straightforward. Now after each price increase each agent calls out a number
rather than the simple in/out declaration, signifying the number of units he is
willing to buy at the current price. A common restriction is that the number
decrease in time; the agent cannot ask to buy more at a high price than he did
at a lower price. The auction is over when the supply equals or exceeds the
demand. If, as is typical in practice, the supply strictly exceeds the demand,
one encounters the same pricing options as in the English auction, as well as
the subtleties regarding tie-breaking.

In a Dutch auction9 the auctioneer begins by announcing a high price, and
then proceeds to announce successively lower prices in a regular fashion. The
auction ends when the first agent signals the auctioneer; the signaling agent must
then purchase the good for that price. Again, extension to the multi-unit case is
mostly straightforward, with some twists. Here agent signal the quantity they
wish to buy. If that is not the entire available quantity the auction continues.
Here there are several options – the price can continue to descend from the
current level, can be reset to a set percentage above the current price, or can
be reset to the original high price.

All the auctions discussed so far are considered open outcry auctions, in that
in all the bidding is done by calling out the bids in public (however, as we’ll
discuss shortly), in the case of the Dutch auction this is something of an optical
illusion). The family of sealed bid auctions is different. In a single-unit sealed-
bid auction each agent submits to the auctioneer a secret, “sealed” bid for the
good which is not accessible to any of the other agents. The agent with the
highest bid must purchase the good, but the price at which she does so depends
on the type of sealed bid auction. In a first-price sealed bid auction (or simply
first-price auction) the winning agent pays an amount equal to her own bid. In

7Unlike the terms English and Dutch, the term Japanese is not used universally; however,
it is commonly used, and there is no competing name for this family of auctions.

8In the theoretical analyses of this auction the assumption is usually that they prices rise
continuously.

9So called because it is the auction method used in the Amsterdam flower market.
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a second-price auction she pays an amount equal to the next highest bid (that
is, the highest rejected bid). The second-price auction is also called the Vickrey
auction. In general, in a kth-price auction the winning agent purchases the good
for a price equal to the kth highest bid.10

Sealed-bid auctions can be extended to apply to the multi-unit case. In this
case, when there are m units for sale, one sometime speaks of mth-price auction
and m + 1-price auction, which play the roles analogous to first- and second-
price auctions in the single-unit case. Here too there are issues of tie breaking,
which are dealt with similarly to the auctions discussed above.

Two-sided, single-dimensional auctions

In two-sided auctions, otherwise known as double auctions, there are many buy-
ers and sellers. A typical example is the stock market, where there are many
buyers and sellers of any given stock. It is important to distinguish this setting
from certain marketplaces (such as popular consumer auction sites) in which
there are multiple separate single-sided auctions.

We will not have much to say about double auctions, in part because the
relative dearth of theoretical results about them. However, let us mention two
primary models of single-dimensional double markets, that is, markets in which
there are many potential buyers and sellers of many units of the same good
(for example, the shares of a given company). We distinguish here between
two kinds of markets, the continuous double auction (or CDA) and the periodic
double auction (otherwise known as the call market).

In both the CDA and the call market agents bid at their own pace and as
many times as they want. Each bid consists of a price and quantity, where the
quantity is either positive (signifying a ‘buy’ order) or negative (signifying a
‘sell’ order). There are no constraints on what the price or quantity might be.
Also in both cases, the bids received are put in a central repository, the order
book. Where the CDA and call market diverge is on when a trade is decided
on. In the CDA, as soon as the bid is received, at attempt is made to match
it with one or more more bids on the order book; for example, a new sell order
for 10 units may be matched with one existing buy bid for 4 units and another
buy bid for 6 units, so long as both the buy-bid prices are higher than the sell
price. In cases of partial matches, the remaining units (either of the new bid or
of one of order-book bids) is put back on the order book. For example, if the
new sell order is for 13 units and the only buy bids on the order book with a
higher price are the ones described (one buy bid for 4 units and another buy
bid for 6 units), two trades are arranged – one for 4 units, and one for 6 – and
the remaining 3 units of the new bid are put on the order book as a sell order.
(We have not mentioned the price of the trades arranged; obviously they must

10The reader who has no previous acquaintance with these auction types may be puzzled
about the merit of kth-price auction for any k > 1. We return to this shortly, but remind the
reader that the VCG mechanism employs a rule similar to second-price auction; indeed, the
VCG is a generalization of the second-price auction, and for this reason is often called the
Generalized Vickrey Auction, or GVA for short, in the context of auctions.
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lay in the interval between the price in the buy bid and the price in the sell bid
– the so called bid-ask spread – but are unconstrained otherwise, and indeed
could be lower for the seller than for the buyer, allowing a commission for the
exchange or broker.)

In contrast, when a bid arrives in the call market, it is simply placed in the
order book. No trade is attempted. Then, at some predetermined time, an
attempt is made to arrange maximal amount of trade possible. This is done
simply by ranking the sell bids in ascending order, the buy bids in descending
order, and finding the point at which supply meets demand. Figure 7.3.1 depicts

before
Sell: 5@$1 3@$2 6@$4 2@$6 4@$9
Buy: 6@$9 4@$5 6@$4 3@$3 5@$2 2@$1

↑
after

Sell: 2@$6 4@$9
Buy: 2@$4 3@$3 5@$2 2@$1

Figure 7.2: A call-market order book, before and after market clears.

a typical call market. In this example 14 units are traded when the market
clears, after which the order book is left with the follow bids awaiting the next
market clear.

Multi-dimensional auctions

Multi-dimensional auctions are ones in which each bid mentions more that only
the price and quantity of one good. Single-dimensional auctions are used almost
universally in consumer auction, primarily because of their relative simplicity.
However, multi-dimensional auctions play a critical role in commercial settings:
in governmental auctions for the electromagnetic spectrum, in energy auctions,
and in corporate procurement auctions.

One can break down multi-dimensional auctions into two families: multi-
attribute and multi-good. In multi-attribute auctions, each good has multiple
features. For example, each good might be a car with a particular engine size,
color, five different options. A potential buyer might have different values for the
car, depending which features it has. In most cases, the multi-attribute problem
is reduced to the single-dimensional case; each agent has a scoring function for
the car as a function of its features, which determines his value for it.

Much more complex is the issue of multi-good auctions. In these auctions
there are multiple goods for sale, and somehow the auction process ties them
together. The reason to tie them together in the first place is that bidders might
have non-additive utility functions. For example, the value of a bidder for the
pair (TV, DVD player) may be different for the sum of his values for each item
alone (in this case the items are complementary, and thus presumably the utility
function would be super additive). The bidder would hate to bid on the DVD
player and win it, only to find out that he got outbid on the TV and cannot
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display the DVD movies. Conversely, a bidder might be willing to pay $100 for
one TV and $90 for another, but still only $100 for the pair (in this cases they
are substitutes, and the utility function is presumably sub-additive).

There are in principle two ways to tie the goods together in an auction. One
way is to run essentially separate auctions for the different goods, but to connect
them at in certain ways. For example, one way is to have a multi-round (e.g.,
Japanese) auction, but to synchronize the rounds in the different auctions so
that as one bids in one auction one has a reasonably good indication of what
is transpiring in the other auctions of interest. Another way to tie auctions
together is to institute certain constraints on bidding that span all the auctions
(so-called activity rules). One example is a budget constraint; a bidder may not
exceeds a certain total commitment across all auctions. Both these ideas can
be seen in some government auctions for electromagnetic spectrum (where the
so-called simultaneous ascending auction was used) as well as in some energy
auctions.

Perhaps the most straightforward way to tie goods together is to allow bid-
ders to bid on combinations of goods. For example, to allow a bidder to offer
$100 for the pair (TV, DVD player), or a disjunctive offer “either $100 for TV1
or $90 for TV2.” This is precisely the nature of combinatorial auctions. This
important class of auctions has received much attention in both economics and
computer science, and thus we devote Section 7.4 to it later in the chapter.

Beyond taxonomy

While it is useful to have reviewed the best known auction types, we have
emphasized all along that the taxonomy presented is not exhaustive. Many
other auctions have been proposed and tried, even single-dimensional ones. For
example, consider the following auction, consisting of a series of sealed bids. In
the first round the lowest bidder drops out; his bid is announced, and becomes
the minimum bid in the next round for the remaining bidders. The process
continues until only one bidder remains, who is the winner at that final price.
This auction, called the elimination auction, is different from any of the above,
and yet makes perfect sense. Or consider a procurement reverse auction, in
which an initial sealed-bid is conducted among the interested suppliers, and
then a reverse English auction is conducted among the three cheapest suppliers
(the ”finalists”) to determine the ultimate supplier. This two-phased auction,
which actually is not uncommon in industry, is again not on the standard menu.

Indeed, the taxonomical perspective obscures the elements common to all
auctions, and thus the infinite nature of the space. What is an auction? At
heart it is simply a structured framework for negotiation. Each such negotiation
has certain rules, which can be broken down into three categories:

1. Bidding rules: How are offers made (by whom, when, what can their
content be).

2. Clearing rules: When are trades decided on, or what are those trades (who
gets which goods, and what money changes hands) as a function of the
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bidding.

3. Information rules: Who knows what and when about the state of negoti-
ation.

The different auctions discussed make different choices in this regard, but it
is clear that other rules can be instituted. Indeed, when viewed this way, it
becomes clear that what seem like three radically different commerce mecha-
nisms – namely the hushed purchase of a Matisse at a high-end auction house
in London, the mundane purchase of groceries at the local supermarket, and
the one-on-one horse trading in a Middle Eastern souk – simply make different
choices along these three dimensions.

7.3.2 Elements of Auction Theory

When analyzing different auction mechanisms, one tries to answer basic ques-
tions such as whether the auction will maximize the revenue to the seller, as
compared to any other auction that might be used. Or alternatively, one might
ask if the auction is (economically) efficient, in that it maximizes the social
welfare.

Given the popularity of auctions on the one hand, and the diversity of auction
mechanisms on the other, it is not surprising that the literature on the topic
is vast. In this section we provide a taste for this literature, concentrating on
single-dimensional, one-sided, single-unit auctions. We begin with some simple
observations, and then provide enough of a formal model of auctions as Bayesian
mechanisms to be able to present some formal results.

Initial observations

The first observation is that the Dutch auction and the first-price sealed bid
auction, while quite different in appearance, are actually the same auction (in
the technical jargon, they are strategically equivalent). In both auctions each
agent must select an amount without knowing about the other agents’ selections;
the agent with the highest amount price wins the auction, and must purchase
the good for that amount.

A similar relationship exists between the Japanese auction and the second-
price sealed bid auction. In both cases the bidder must select a number (in the
sealed bid case the number is the one written down, and in the Japanese case it
is the price at which the agent will drop out); the bidder with highest amount
wins, and pays the amount selected by the second-highest bidder. However the
connection is not as tight as the relationship between the Dutch and first price
auctions, since here the information disclosure is different. In the sealed bid
auction the amount is selected without knowing anything about the amounts
selected by others, whereas in the Japanese auction the amount can be updated
based on the prices observed at which lower bidders dropped out. This matters
in certain cases, in particular the cases of common value discussed below.
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Obviously, the Japanese and English auctions are also closely related. The
main difference is that in the English auction successive bids can be so-called
jump bids, or bids that are greater than the previous high bid by more than
the minimum increment. Although it seems relatively innocuous, this feature
complicates analysis of such auctions, and indeed when an ascending auction is
analyzed it is almost always the Japanese one, not the English.

Auctions as Bayesian mechanisms

In order to analyze auctions beyond these basic observations we need to be more
formal. First note that an auction setting defines a (Bayesian) mechanism-
design problem (N,O, U,C). The possible outcomes O consist of all possible
ways to allocate the good and to charge the bidders. The choice function C
depends on the objective of the auction. If it is to maximize efficiency, it is
defined in a straightforward way. If it is to maximize revenue, we must add the
auctioneer as one of the agents, with no choice of strategy but with a decided
preference over the various outcomes (namely, preferring the outcomes in which
the total payments to the auctioneer are maximal), a preference that defines
the C function.

However, each Bayesian problem includes two more ingredients that we need
to specify – the common prior, and the private signals of the agents. Here we
distinguish between two settings, called the independent private value (IPV)
setting and the common value (CV) setting. In the IPV setting all agents’ valu-
ations are drawn independently from the same (commonly known) distribution,
and the signal of the agent consists only of his own valuation (and thus gives him
no information about the valuation of the others). An example where the IPV
setting is appropriate is in auctions consisting of bidders with personal tastes
who aim to buy a piece of art purely for their own enjoyment. In contrast,
in the CV setting all agents have an identical value which is drawn from some
distribution, but the agents get different signals about the value. An example
where the CV setting is appropriate is in auctions for oil drilling rights. In these
auctions there is a certain amount of oil to be found, the cost of extraction will
be about the same no matter who wins the contract, and the price of oil will
be what it will be. The only difference is that the different companies have dif-
ferent geologists and financial analysts, and thus different assessments for these
quantities.11

The difference between the IPV and CV setting is substantial. Consider, for
example, the question of whether the second-price sealed-bid auction, which is
a direct mechanism, is incentive compatible (that is, does it provide incentive
the agents to bid their true value). It is not hard to see that in the CV case it
does. Indeed, the second-price auction is a special case of the VCG mechanism
discussed earlier, but in this special case the proof is even more immediate; here
it is immediate to see that the bidder’s bid amount determines whether he wins,
but has no impact on his payment. Clearly the bidder would want to win at

11There is also an intermediate setting called affiliated values, but we do not discuss it here.
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any amount up to his true valuation, and will only lose by bidding either higher
or lower. But this analysis depends crucially on the assumption that the bidder
knows his precise valuation, which is true in the IPV setting but not in the CV
setting.

It is interesting to contrast this with the analysis of the first-price auction in
the CV setting. Here we do not have the luxury of having dominant strategies,
and must resort to (Bayesian) equilibrium analysis. We will consider the two-
player case, in which the bidders’ valuations are drawn uniformly from some
interval, say [0..10], and the bidders are risk neutral.12

In what follows we use si to refer to the bid of player i, and vi to refer to
the true valuation of player i. Thus if player i wins, his payoff is ui = vi − si;
if he loses, it is ui = 0. Now we prove that there is an equilibrium in which
each player bids half of their true valuation (it also happens to be the unique
symmetric equilibrium, but we do not discuss that here). In other words, we
prove that ( 1

2v1,
1
2v2) is an equilibrium strategy profile. We begin by calculating

the expected payoff of player 1, assuming that player 2 is bidding 1
2v2. Since

player 1 believes that all possible valuations to player 2 are equally likely, we
do this by integrating over all possible valuations of player 2.

E(u1) =
∫ 10

0

u1dv2

Note that this integral can be broken up into two smaller integrals that differ
on whether or not player 1 wins the auction. Because player 2 is bidding half of
her true valuation, player 1 wins when player 2’s valuation is less than twice his
own bid, s1, and he loses otherwise. Then player 1’s utility is simply (v1 − s1)
when he wins, and 0 otherwise.

E(u1) =
∫ 2s1

0

u1dv2 +
∫ 10

2s1

u1dv2

=
∫ 2s1

0

(v1 − s1)dv2 +
∫ 10

2s1

0dv2

=
∫ 2s1

0

(v1 − s1)dv2

= (v1 − s1)v1|2s1
0

= 2v1s1 − 2s2
1

Now we have a closed form function which represents the expected payoff of
player 1, in terms of his valuation and bid. We would like to find the bid value
which maximizes this expected payoff. We find the maximum by finding the
point where the derivative with respect to s1 is zero, and then solving for s1 in

12Risk neutral agents are indifferent between a certain event with a particular payoff and a
lottery among events with the same expected outcome. In contrast, risk-averse agents have a
higher utility to the former, and risk-seeking to the latter.
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terms of v1.

∂

∂s1
(2v1s1 − 2s2

1) = 0

2v1 − 4s1 = 0

s1 =
1
2
v1

Thus when player 2 is bidding half her valuation, player 1’s best strategy is to bid
half his valuation. The calculation of the optimal bid for player 2 is analogous,
given the symmetry of the game and the equilibrium. We have proven that
( 1
2v1,

1
2v2) is an equilibrium strategy profile of this game.

More generally, we have the following theorem.

Theorem 7.3.1 In a first-price sealed bid auction with n risk-neutral agents
whose valuations are independent and identically distributed over a finite inter-
val, the unique symmetric equilibrium is given by the strategy profile (n−1

n v1, . . . ,
n−1

n vn).

In other words, the unique equilibrium of the auction occurs when each player
bids n−1

n of their valuation. Thus the first-price sealed-bid auction protocol is
not incentive compatible.

Revenue maximization

The final topic that we discuss in connection with auction theory is arguably
what auctioneers care most about: revenue maximization. If you have an item
to sell and wish to get top dollar, which of the many auction types should you
use?

The most prominent result here is the following theorem.

Theorem 7.3.2 (Revenue Equivalence Theorem) Given an IPV setting with
risk-neutral bidders13, if an auction has the following two properties:

• The auction is efficient, that is, it always awards the good to the bidder
with the highest valuation, and

• The bidder with the lowest valuation never has to pay anything

then the auction maximizes the seller’s expected revenue.

Thus under the specified conditions, all the auctions we have spoken about
so far – English, Japanese, Dutch, and all sealed bid auction protocols – are
revenue equivalent, and optimal.

The primary difference between the IPV and the common value (CV) en-
vironments is that in the CV environment, the English and first-price sealed
bid auction protocols are no longer revenue equivalent. One way to understand
this is to note that agents in sealed bid auctions are susceptible to the so-called

13And certain conditions on the distribution of valuations, which are not discussed here.
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winner’s curse – by definition, the agent who has overestimated the value the
most is the winner. In such an environment the English auction protocol can be
expected to give higher revenue than the first-price sealed bid auction protocol,
because in an English by seeing other agents’ bids the bidder is somewhat im-
mune from this curse. However, the Dutch auction and the first-price sealed bid
auction are still revenue equivalent, because in neither protocol do the buyers
receive information about the valuations of other buyers.

Because these findings can be confusing, they are summarized in table 7.1.

IPV Risk-neutral = = = =
Risk-averse Jap = Eng = 2nd < 1st = Dutch
Risk-seeking = = > =

CV Risk-neutral = > > =

Table 7.1: Relationships between revenues of various auction protocols.

7.4 Combinatorial auctions

As mentioned briefly above, combinatorial auctions are auctions in which mul-
tiple goods are being auctioned simultaneously. In a combinatorial auction,
bidders are allowed to place bids on arbitrary combinations, or bundles of these
goods. For example, imagine that you visit a popular consumer auction website,
and find a wide variety of household goods for sale. You might like to submit a
bid of the following form: “I bid $100 for the TV, VCR, and couch.” Of course,
your bid may be more complex , such as: “I bid $100 for the TV and VCR, or
$150 dollars for the TV and DVD player, but not both.”

Let’s begin by giving a precise formulation of a combinatorial auction prob-
lem. A combinatorial auction problem is a tuple (N, X, v1, . . . , vn), where N is
a set of n agents, X is a set of m goods, and for each agent i ∈ N , vi : 2X → <
is a valuation function. Most commonly, the combinatorial auction problem is
to select an allocation a : 2X → N of goods to agents that maximizes some
measure such as total revenue to the auctioneer, or efficiency.

Combinatorial auctions pose a number of interesting computational prob-
lems. In the consumer auction example above, there are number of questions
you might ask. First, as a bidder you might want to know what you can bid ;
in other words, what kinds of bids are you permitted to submit. While this is
trivial in single-unit auctions, in a combinatorial auction a bid may consist of an
arbitrary valuation of every possible subset of goods. When there are m goods,
there are 2m such subsets, and thus the size of bids can easily be exponential
in the number of goods. We will discuss possible bidding languages in section
7.4.1 below.

Second, as in single-dimensional auctions, you might want to know what
you should bid. What strategy is most likely to maximize your welfare? If
the combinatorial auction mechanism is incentive compatible, you will want to
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submit your true valuation for the good as your bid. As we will see in section
7.4.2, we can use a generalized form of the Vickrey auction to as an incentive
compatible mechanism.

Finally, if you are the auctioneer in this auction, you might want to know how
you should allocate the goods after you have collected all of the bids. Although
this is straightforward in single-unit auctions, in combinatorial auctions it is not
at all trivial. In section 7.4.3 we will see that the problem is in general very
difficult.

7.4.1 Expressing a Bid: Bidding Languages

Before we can consider the computation of an allocation, we must find a way
for the bidders in the auction to express their bids. In a combinatorial auction,
a bid may consist of an arbitrary valuation on every possible subset of the
goods. Since there are an exponential number of such subsets, the length of
a particular bid may in general be exponential. If we are to have any hope of
finding tractable mechanisms for general combinatorial auctions, we must first
find a way for bidders to express their bids in a more succinct manner. In this
section we will present a number of bidding languages that have been proposed
for encoding bids.

As we will see, these languages differ in the ways that they express different
classes of bids. We can state some desirable properties that we might like to have
in a bidding languages. First, we want our language to be expressive enough
to represent all possible valuation functions. Second, we want our language
to be concise, so that expressing commonly used bids doesn’t take space that
is exponential in the number of goods. Third, we want our language to be
natural for humans to both understand and create; thus the structure of the
bids should reflect the way in which we think about them naturally. Finally,
we want our language to be tractable for the auctioneer algorithms to process
when computing an allocation.

In the discussion that follows, for convenience we will often speak about
bids as valuation functions. Indeed, in the most general case a bid will contain
a valuation for every possible combination of goods. However, be aware that the
bid valuations may or may not reflect the players’ true underlying valuations.
We also limit the scope of our discussion to valuation functions in which the
following properties hold.

• No externalities. The bidder’s valuation depends only on the set of
goods he wins, so that the valuation function is vi : 2X → < where the
domain is just the set of goods that she wins.

• Free disposal. Goods have non-negative value, so that if S ⊆ T then
vi(S) ≤ vi(T ).

• Nothing-for-nothing. In other words, vi(∅) = 0.

There are two important properties that a valuation function may or may not
satisfy. They concern the way in which the valuation of one good may be affected
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by the presence or absence of another good. The first is complementarity. A
valuation function v has complementarities if there exist two sets of goods S, T ⊆
X, for which v(S∪T ) > v(S)+v(T ). The second property is substitutability. A
valuation function v has substitutability if there exist two sets of goods S, T ⊆
X, such that S ∩ T = ∅, for which v(S ∪ T ) < v(S) + v(T ).

Before we define specific bidding language, let us consider some types of
bids that we may commonly want to express. We can divide these bids into
symmetric and asymmetric valuations. Symmetric valuations are those in which
all goods are identical from the point of view of the bidder, and for this reason
we sometimes use the term multiple units of good. A few common symmetric
valuations are the following.

• Additive valuation. The bidder’s valuation of a set is directly propor-
tional to the number of goods in the set, so that vi(S) = c|S| for some
constant c.

• Single item valuation. The bidder desires any single item, and only a
single item, so that vi(S) = c for some constant c for all S 6= ∅.

• Fixed budget valuation. Similar to the additive valuation, but the
bidder has a maximum budget of B, so that vi(S) = min(c|S|, B)

• Majority valuation. The bidder values equally any majority of the
goods, so that

vi(S) =
{

1 if |S| ≥ m/2
0 otherwise

We can generalize all of these symmetric valuations to a general symmetric
valuation.

• General symmetric valuation. Let p1, p2, . . . , pm be arbitrary non-
negative prices, so that pj specifies how much the bidder is willing to pay
of the jth item won. Then

vi(S) =
|S|∑

j=1

pj

• Downward sloping valuation. A downward sloping valuation is a sym-
metric valuation in which p1 ≥ p2 ≥ · · · ≥ pm.

Many common types of bids are not symmetric, however. Often there are
different classes of goods, and valuations of sets of goods are a function of the
classes of goods in the set. For example, imagine that our set X consists of two
classes of goods: some red items and some green items, and the bidder requires
only items of the same color. Alternatively, it could be the case that the bidder
wants exactly one item from each class.

Now that we have seen some common bid valuations, let’s begin to build
up some languages for expressing these bids. Perhaps the most basic thing we
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might do is bid on one particular subset of goods. We call such a bid an atomic
bid. An atomic bid is a pair (S, p) which indicates that the agent is willing to
pay a price of p for the subset of goods S. Note that an atomic bid implicitly
represents an AND operator between the different goods in the bundle. We
stated an atomic bid above when we wanted to bid on the couch, the TV, and
the VCR for $100.

Of course, many simple bids cannot be expressed as an atomic bid; for ex-
ample, it is easy to verify that an atomic bid cannot represent even the additive
valuation defined above. In order to represent this valuation, we will need to be
able to bid on disjunctions of atomic valuations. An OR bid is a disjunction of
atomic bids (S1, p1) OR (S2, p2) OR · · · OR (Sk, pk) which indicates that the
agent is willing to pay a price of p1 for the subset of goods S1, or a price of p2

for the subset of goods S2, etc.
Note that we have used the OR operator informally in the definition of

the OR bid. The OR operator is actually an operator for combining valuation
functions, and we can define its semantics more precisely. Let V be the space
of possible valuation functions, and v1, v2 ∈ V be arbitrary valuation functions.
Then we have that

(v1 OR v2)(S) = max
R,T⊆S,R∩T=∅

(v1(R) + v2(T )).

It is easy to verify that an OR bid can express the additive valuation. As
the following result shows, its power is still quite limited however; for example
it cannot express the single item valuation described above.

Theorem 7.4.1 OR bids can express all bids that have no substitutability, and
only them.

For example, in the consumer auction example given above, we wanted to
bid on either the TV and the VCR for $100, or the TV and the DVD player for
$150, but not both. It is not possible for us to express this using OR bids.

For this reason, we present the XOR bid. An XOR bid is an exclusive OR of
atomic bids (S1, p1) XOR (S2, p2) XOR · · · XOR (Sk, pk) which indicates that
the agent is willing to accept one but no more than one of the atomic bids.

Once again, the XOR operator is actually defined on the space of valuation
functions. We can define its semantics precisely as follows. Let V be the space
of possible valuation functions, and v1, v2 ∈ V be arbitrary valuation functions.
Then we have that

(v1 XOR v2)(S) = max(v1(S), v2(S)).

We can use XOR bids to express our example from above:

({TV, VCR}, 100) XOR ({TV,DVD}, 150)

It is easy to see that XOR bids have unlimited representational power, since it
is possible to construct a bid for an arbitrary valuation using an XOR of the
atomic valuations for every possible subset S ⊆ X.
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Theorem 7.4.2 XOR bids can represent all possible valuation functions.

However, this doesn’t imply that XOR bids represent every valuation func-
tion efficiently. In fact, as the following result states, there are simple valuations
that can be represented by short OR bids but which require XOR bids of expo-
nential size.

Theorem 7.4.3 Additive valuations can be represented by OR bids in linear
space, but require exponential space if ] represented by XOR bids.

Note that for the purposes of the present discussion, we consider the size
of a bid to be the number of atomic formulas that it contains. The reader can
verify that the additive valuation requires just this.

Now we present bidding languages that result from combining the OR and
XOR operators on valuation functions. Consider a language which allows bids
that are of the form of an OR of XOR of atomic bids. We call these bids OR-
of-XOR bids. An OR-of-XOR bid is a set of XOR bids, as defined above, such
that the bidder is willing to obtain any number of these bids.

Of course, like XOR bids, OR-of-XOR bids have unlimited representational
power. However, unlike XOR bids, they can generalize to plain OR bids, which
affords greater simplicity of expression, as we have seen above. As a specific
example, OR-of-XOR bids can express any downward sloping symmetric valua-
tion on m items in size of only m2. However, its expressive power is still limited.
For example, even simple assymetric valuations require size of at least 2m/2+1

to express in the OR-of-XOR language.
It is also possible to define a language of XOR-of-OR bids, and even a lan-

guage allowing arbitrary nesting of OR and XOR statements here (we refer to
the latter as generalized OR/XOR bids). These languages vary in their expres-
sivity.

Now we turn to a slightly different sort of bidding language that is powerful
enough to simulate all of the preceding languages with a relatively succinct
representation. This language results from the insight that it is possible to
simulate the effect of an XOR by allowing bids to include dummy items. The
only difference between an OR and a XOR is that the latter is exclusive; we
can enforce this exclusivity in the OR by ensuring that all of the sets in the
disjunction share a common item. We call this language OR*. Given a set of
dummy items Xi for each agent i ∈ N , an OR* bid is a disjunction of atomic
bids (S1, p1) OR (S2, p2) OR · · · OR (Sk, pk), where for each l = 1, . . . , k, the
agent is willing to pay a price of pl for the set of items Sl ⊆ X ∪Xi.

Let’s give an example to help make this clearer. If we wanted to express our
TV bid from above using dummy items, we would create a single dummy item
D, and express the bid as follows.

({TV, VCR,D}, 100) OR ({TV,DVD, D}, 150)

The following results show us that the OR* language is surprisingly expres-
sive and simple.
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Theorem 7.4.4 Any valuation that can be represented by OR-of-XOR bids of
size s can also be represented by OR* bids of size s, using at most s dummy
items.

Theorem 7.4.5 Any valuation that can be represented by XOR-of-OR bids of
size s can also be represented by OR* bids of size s, using at most s2 dummy
items.

Theorem 7.4.6 Any valuation that can be represented by OR/XOR bids of size
s can also be represented by OR* bids of size s, using at most s2 dummy items.

Let us briefly summarize the properties of the languages we have discussed.
The XOR, OR-of-XORs, XOR-of-OR, OR/XOR, and OR* languages are all
powerful enough to express all valuations. Second, the efficiencies of the OR-of-
XOR and XOR-of-OR languages are incomparable: there are bids that can be
expressed succinctly in one but not the other, and vice-versa. Third, the OR*
language is strictly more expressive than both the OR-of-XOR and XOR-of-OR
languages: it can efficiently simulate both languages, and succinctly express
some valuations that require exponential size in both of them.

Recall that in the auction setting these languages are used for communicating
bids to the auctioneer. It is the auctioneer’s job to first interpret these bids,
and then calculate an allocation of goods to agents. Thus it is natural to be
concerned about the computational complexity of a given bidding language.
In particular, we may want to know how difficult it is to take an arbitrary
bid in some language and compute the valuation of some arbitrary subset of
goods according to that bid. We call this the interpretation complexity. The
interpretation complexity of a bidding language is the minimum time required
to compute the valuation v(S), given input of an arbitrary subset S ⊆ X and
arbitrary bid v in the language.

Not surprisingly, the atomic bidding language has interpretation complexity
that is polynomial in the size of the bid; to compute the valuation of some
arbitrary subset S, just check to see whether every member of S is in the atomic
bid; if they are, the valuation of S is just that given in the bid (because of free
disposal) and if they are not, then the valuation of S is 0. The XOR bidding
language also has interpretation complexity that is polynomial in the size of
the bid; just perform the above procedure for each of the atomic bids in turn.
However, all of the other bidding languages mentioned above have interpretation
complexity that is exponential in the size of the bid. For example, given the
OR bid (S1, p1) OR (S2, p2) OR · · · OR (Sk, pk), computing the valuation of S
requires checking all possible combinations of the atomic bids, and there are 2k

such possible combinations.
One might ask why we even consider bidding languages that have exponen-

tial interpretation complexity. Simply stated, the answer is that the language
with only polynomial interpretation complexity are not expressive enough. This
brings us to a more relaxed criterion. It may be enough to require that our bid’s
valuation of a set is verifiable in polynomial time. We define the verification
complexity of a bidding language as the minimum time required to verify the
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valuation v(S), given input of an arbitrary subset S ⊆ X, an arbitrary bid v in
the language, and a proof of the proposed valuation v(S).

Note that the relationship between verification complexity and interpretation
complexity is analogous to the relationship between the complexity classes P and
NP in theoretical computer science. As it turns out, all of the bidding languages
mentioned above are polynomially verifiable.

7.4.2 Achieving Incentive Compatibility: The General-
ized Vickrey Auction

In this section we address the problem of making auctions incentive compatible.
Recall that a mechanism is incentive compatible if it is a dominant strategy for
each player to reveal their true valuation function (or type).

In general, there are a few different measures that auction mechanisms might
try to optimize when selecting an allocation.

1. Revenue maximization. The allocation selected by the auction protocol
maximizes the total revenue to the seller.

2. Efficiency. The auction protocol allocates the goods to the bidders who
value them the highest.

3. Incentive compatibility. The auction protocol gives every bidder in-
centive to reveal his true valuation functions.

One might imagine that a seller designing an auction really only cares about
the first criterion: maximizing the revenue that he will receive. Auction proto-
cols that satisfy this property are sometimes called optimal, and optimal auc-
tions are not well understood. Thus, instead we will discuss protocols that
satisfy the second property, efficiency. We usually achieve this second property
using mechanisms that are also incentive compatible; if we know the agents’ true
valuations, then it is straightforward for us to assign the goods to the agents
who value them the highest.

Note that in a naive combinatorial auction mechanism there is ample in-
centive for bidders not to reveal their true valuation in their bids. Consider
the following simple valuations in a combinatorial auction setting. Here vi is
intended to represent the bidder’s true valuation.

v1(x, y) = 100

v1(x) = v1(y) = 0

v2(x) = v2(x) = 75

v2(x, y) = 0

v3(x) = v2(x) = 40

v3(x, y) = 0
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Given these valuations, it is clear that players 2 and 3 are better off not revealing
their true type. As it stands, the auctioneer will maximize welfare by assigning
x and y to 1, and 2, respectively, and this would still be the case if 1 and 2
lowered their valuations for x and y a bit.

However, recall from section 7.2 that the revelation principle assures us that
if there is any mechanism which is a solution, then there is a mechanism which
is incentive compatible. Thus we get the third desideratum “for free.”

Perhaps not surprisingly, the auction which satisfies properties two and three
is an instance of the general Vickrey-Clarke-Groves (VCG) mechanism discussed
in section 7.2. We will formalize the VCG combinatorial auction in the remain-
der of this section. Note that it would be difficult to design an auction protocol
which maximized efficiency without being incentive compatible: the auctioneer
would not have any information about the true valuations of the bidders!

Given an auction problem (N, X, v), the VCG combinatorial auction works
as follows. We use notation that is slightly different from that given above.
Here, we let aS,i be 1 if the subset S ∈ 2X was allocated to agent i ∈ N and 0
otherwise.

1. Each bidder i ∈ N reports a bid valuation vi. (We will see below that
this bid valuation is their true valuation, since they have no incentive to
misreport it.)

2. The auctioneer chooses an allocation a = (aS,i)S∈2X ,i∈N that solves the
following integer program.

V = max
∑

i∈N

∑

S⊆X

vi(S)aS,i

s.t.
∑

S3j

∑

i∈N

aS,i ≤ 1 ∀j ∈ X

∑

S⊆X

aS,i ≤ 1 ∀i ∈ N

aS,i = {0, 1} ∀S ⊆ X, i ∈ N

Call this optimal allocation a∗.

3. The auctioneer computes for each bidder k ∈ N the following.

V −k = max
∑

i∈(N−k)

∑

S⊆X

vi(S)aS,i

s.t.
∑

S3j

∑

i∈(N−k)

aS,i ≤ 1 ∀j ∈ X

∑

S⊆X

aS,i ≤ 1 ∀i ∈ (N − k)

aS,i = {0, 1} ∀S ⊆ X, i ∈ (N − k)
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4. Finally, the payment that bidder i makes is

V −i − [V −
∑

S⊆X

vi(S)a∗S,i].

Notice that the payment made by each bidder is non-negative.

Just as in the general case, each bidder pays the auctioneer the difference
between the social welfare of the other agents when he is part of the allocation,
and the social welfare of the other agents in the hypothetical case that he is
not part of the allocation. Note that V is the maximum social welfare of all the
agents, and that V −i is the maximum social welfare of all of the agents except
i when i is not considered in the allocation.

Now, let us show that the VCG combinatorial auction is incentive compati-
ble. Note that the true utility function of bidder i is

∑

S⊆X

vi(S)a∗S,i − V −i + [V −
∑

S⊆X

vi(S)a∗S,i]

= V − V −i

In the first expression, the first term is the value that bidder i places on the
goods that he receives, and the remainder is the payment that he must make
to the auctioneer. In the simplified expression, the bidder has no influence over
the second term, and can only benefit by trying to maximize the first term. But
this is precisely what the auctioneer is trying to maximize. Thus the bidder has
incentive to report his true valuation function.

It is more difficult to show that the VCG combinatorial auction maximizes
revenue to the auctioneer. However, consider the following informal argument.
The total revenue of an auctioneer employing the VCG auction can be calculated
as follows. ∑

i∈N

V −i −
∑

i∈N

[V −
∑

S⊆X

vi(S)a∗S,i]

=
∑

i∈N

∑

S⊆X

vi(S)a∗S,i +
∑

i∈N

(V −i − V )

= V +
∑

i∈N

(V −i − V )

Note that if there were a large number of bidders, then no single bidder could
have a significant effect. That is, one would expect that on average, V is close in
value to V −i for all i ∈ N . Thus, the revenue to the seller would be close to V ,
which is of course the largest possible revenue that any auction could extract.

The VCG combinatorial auction mechanism has a few shortcomings. The
most important of these is shown by the Myerson-Satterthwaite impossibility
theorem, which states that no mechanism can be simultaneously incentive com-
patible, efficient, and budget balanced. In particular, it follows that the VCG
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auction cannot be all three; indeed, is is incentive compatible and efficient, but
not budget balanced.

The VCG auction is clearly impractical to implement for most applications,
since it requires computing the solution to an integer program, a problem known
to be NP-complete (and thus requiring time exponential in n and m). Of course
it is possible to approximate the optimal solution to the integer program, but
this may not preserve incentive compatibility. Another way to make the problem
tractable is to restrict the classes of bids that bidders may submit. We will cover
these issues in more detail in the next section.

7.4.3 Computing an Allocation

After the valuations have been expressed in some language and communicated
to the auctioneer, the problem of computing the allocation still remains. For the
purposes of this section, we consider the problem of computing an allocation
that is efficient, in that it maximizes the total social welfare. We begin by
formalizing this problem as the following integer program (IP).

maximize
∑

i∈N

∑

S⊆X

vi(S)aS,i

s.t.
∑

S3j

∑

i∈N

aS,i ≤ 1 ∀j ∈ X

∑

S⊆X

aS,i ≤ 1 ∀i ∈ N

aS,i = {0, 1} ∀S ⊆ X, i ∈ N

The first line states that we want to maximize the sum of the values to the
agents of the goods that they are assigned in the allocation. The next two lines
give the constraints on this optimization. The first of these ensures that all of
the subsets in the allocation are non-overlapping, that we don’t allocate any
goods more than once. The second ensures that each bidder receives at most
one subset of goods. Finally, the last constraint is what makes this an integer
program rather than a general linear program (LP): no subset can be partially
assigned to an agent.

Readers familiar with the theory of computation will recognize that the com-
binatorial auction allocation problem expressed above is an instance of the more
general set packing problem (SPP) that has long been studied by theoreticians.
In the set packing problem, we are given a set of elements X and a set Y of
possible subsets of X, each of which is assigned a weight wk. We wish to select
the set of subsets that maximizes the sum of the weights of the subsets. In the
program that follows, let ak be 1 if the set k ∈ Y is selected in the allocation,
and 0 otherwise. Also, let bj,k be 1 if the element j ∈ X is in the subset k ∈ Y
Then the problem can be expressed formally as the following integer program.

maximize
∑

k∈Y

wkak
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s.t.
∑

k∈Y

bj,kak ≤ 1 ∀j ∈ X

ak = {0, 1} ∀k ∈ Y

Let a∗ be the optimal allocation. Note that in order to make this a combinatorial
auction problem, we need only to divide the weight function into the many
valuation functions of the different bidders.

Unfortunately, it is well known that the SPP, and IPs in general, are NP-
complete. In other words, they are known to be in a class of problems for which
no polynomial time algorithm is known. Thus we believe that in the worst case
it may take exponential time to compute this efficient allocation.

If we want to compute an allocation in a combinatorial auction, we must
use a strategy other than solving the IP. There are a few different approaches
we might take. The first thing we might try is to find a way to approximate
the solution. A straightforward way to approximate the solution to the integer
program is to relax the integer constraint, thereby transforming the problem
into a linear program, which is solvable by known methods in polynomial time.
However, note that such a solution may result in “fractional” allocations, in
which fractions of bundles of goods are allocated to different bidders. If we are
lucky, our solution to the LP will happen to be integral anyway.

Fortunately, this is the case for certain special instances of the auction prob-
lem. Mathematically, these are instances in which the extreme points of the
polyhedron P (A) = {a|∑j∈Y bj,kak ≤ 1∀j ∈ X; ak > 0 ∀k ∈ Y } representing
the solution space are composed only of 0 or 1 values. Such a polyhedron is
said to be integral. As it turns out, it is not trivial to define conditions that are
sufficient to ensure an integral polyhedron. In general these conditions comprise
restrictions on the kinds of subsets that bidders may bid on. In the following
discussion we will present a few special cases that are relevant to combinatorial
auctions.

The most common of these is called total unimodularity (TU). In general
terms, a matrix A is TU if the determinant of every square submatrix is 0, 1, or
-1. Since every extreme point of the polyhedron P (A) corresponds to a square
submatrix of A, and it is easy to see that the polyhedron of a TU matrix will
be integral.

How do we find out if a particular matrix (of possible bids, for instance) is
TU? There are many ways. First, there exists a polynomial time algorithm to
decide whether an arbitrary matrix is TU. Second, we can characterize impor-
tant subclasses of TU matrices. One important subclass of TU matrices are the
network matrices, which are matrices in which each column contains at most
two non-zero entries of opposite sign and absolute value 1. It is not clear what
class of bids the network matrices correspond to.

Another important subclass of TU matrices is the class of 0-1 matrices with
the consecutive ones property. In this subclass, all nonzero entries in each col-
umn must appear consecutively. One might ask what classes of bids the con-
secutive ones property corresponds to in auction problems. This corresponds
roughly to contiguous single-dimensional goods, such as time intervals or parcels
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of land along a shoreline, where bids can only be made on bundles of contiguous
goods.

Another subclass of auction problems that have integral polyhedra, and thus
can be easily solved using linear programming, corresponds to the set of balanced
matrices. A 0-1 matrix is balanced if it has no square submatrix of odd order
with exactly two 1’s in each row and column. One class of auction problems that
is known to have a balanced matrix are those which allow only tree-structured
bids. Consider that the set of goods for sale are the vertices of a tree, con-
nected by some set of edges. All bids must be on bundles of the form (j, r),
which represents the set of vertices which are within distance r of item k. The
constraint matrix for this set of possible bundles is indeed balanced, and so the
corresponding polyhedron is integral, and the solution can be found using linear
programming.

An unrelated class of auction problems that can be solved easily is that in
which we allow bundles of no more than two items. It is possible to show that for
this sort of auction problem an optimal allocation can be computed in quadratic
time.

In many cases the solutions to the associated linear program will not be inte-
gral. In these cases we must resort to using heuristic methods to find solutions to
the auction problem. We can distinguish between complete heuristic methods,
which are guaranteed to find an optimal solution if one exists, and incomplete
methods, which are not guaranteed to find optimal solutions. As an example,
one obvious incomplete heuristic method is the greedy method, in which we it-
eratively allocate the bundle which maximizes the ratio of the valuation of the
bundle to the number of goods in the bundle.

Unfortunately, in general there doesn’t exist an algorithm that can guarantee
that you reach even an approximate solution that is within a fixed fraction of
the optimal solution, no matter how small the fraction. However, there does
exist an algorithm that guarantees a solution that is within 1/

√
k of the optimal

solution, where k is the number of goods.

In recent years we have seen an explosion of specialized search algorithms for
combinatorial auctions. The complete methods guarantee optimal results, but
not rapid convergence (and of course in the worst case they take exponential
time). Incomplete, greedy-search methods, such as the one described above can
perform an order of magnitude faster. As we move forward, we will need a
uniform means of testing and evaluating the performance the different heuristic
algorithms.
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