Selecting Products

Venky Harinarayan (venky@cambrianventures.com)

1

Problem Statement

Select a multi-set (set with number) of products, subject to certain constraints, that maximizes profit

2

Essence of Selling

- ◆ What products do I stock in my stores?
 - Constraint: capital tied up in keeping products in stores (inventory)
- ◆What products do I keep in my end-caps (checkout counters)?
 - Constraint: shelf-space
- ◆What paid-listings do I show first in a search?
 - Constraint: online real-estate
- ◆For a given customer, what's the best product to advertise?
 - Constraint: online real-estate

Two Scenarios

- ◆Focus on aggregate customer behavior
 - Problem definition
 - E.g. what products do I stock in my stores?
 - No information available about individual customers
- ◆ Focus on individual customer
 - personalization

4

General Framework

 X_i : $Person_i$, P_i : $Product_i$ $E(X_i, P_j)$: Expected number of P_j that X_i buys (clicks through, etc...) M_j : Profit-Margin on P_j

Aggregate User Case

Collapse all the X_i 's to one node

 $Demand, \ D_j = \varSigma_i \, E(X_i, P_j)$

Problem Statement

Profit, $\$_i = k_i * M_i$

$$\begin{split} &\textit{Maximize: } \sum_{j} k_{j}^{*} * M_{j}, \qquad \textit{Turns}_{.} k_{j} = 0, 1, 2, \dots (\textit{ number of } P_{j} \textit{selected}) \\ &\textit{Subject to: } \sum_{j} k_{j}^{*} * c_{j} <= \textit{C}, \quad c_{j} - \textit{cost associated with } P_{j} & \& \end{split}$$

 $k_i \le D_i$ not to exceed demand

Example

		Margin	Demand	Cost	Margin/Cost
Ī	P1	3	12	25	12%
Ī	P2	9	3	40	22.5%
Ī	P3	10	1	55	18.2%

Constraint: total cost <= 100 (C)

Greedy (pick maximal margin/cost at each step): $\{P_2^2\}$

LP: { P₃, P₂}

7

Retailers and LP

- ◆ In general product selection can be set up as a linear/integer program (LP)
- ◆Retailers are giant multi-stage LP execution engines!

9

In real life...

- ◆Space of products may be too large
 - Eg. Wal-mart has millions of products to consider
- ◆All information may not be available
- Implementation complexity and Performance impact
 - Problems too large to run in real-time
- ◆Intractability
- ◆ Buyers do the job of product selection
 - More in line with greedy algorithm

10

Product Selection in Retailers

- ◆ If all retailers solve the same equations, why don't they all have the same products?
- ◆ Product Selection defines Retailer (brand)
 - Brand constraint: maximize profits in the future
 - E.g. Wal-mart brand constraint: select only products that will be bought by 80% of population
 - E.g. Gucci brand constraint: select only high-value (margin) products

11

Example

	Margin	Demand	Cost	Margin/Cost
P1	3	12	25	12%
P2	9	3	40	22.5%
P3	10	1	55	18.2%

Constraint: total cost <= 100 (C)

Wal-mart brand constraint: maximize turns: $\{P_1^4\}$

Gucci brand constraint: no low-margin products: { P3,P2}

Personalization

- ◆Given customer ☐ what products do I recommend to her?
 - ☐is a loyal customer ☐purchase history available
 - Collaborative-Filtering based Recommender Systems
 □is a new customer □has done certain operations on the site like search, view products, etc...
 - Assortment of techniques
 - □is a new customer □know nothing about her Mass merchandizing as in offline retailers, bestsellers,...
- ◆In practice, combination of all of the above

Personalization

- ◆ Offline retail: merchandizers (analog of buyers) pick products to advertise
 - One size fits all □no personalization
- ◆Millions of customers, cannot have human merchandizing to each customer
- ◆Algorithms that look at only customer's data do not work well
- ♦ Heuristic: customers help each other
 - Algorithms enable this to happen!

Recommender Systems

Purchase History of X, available What new products to advertise to X_i ?

Given set of products that X_i has bought $B = \{P_{i,p}, P_{i,2}, \dots P_{in}\}$

Find P_i such that $E(X_i, P_i)$ is maximum

Recommender Systems

- ◆Intuition:
 - Ask your friends, what products they like
- ◆ Friends = people who have similar behavior to you

Collaborative Filtering

- Representation of Customer and Product data
- ◆ Neighborhood formation (find my friends)
- ◆Recommendation Generation from neighborhood

Representation

- ◆M*N customer product matrix, R
 - $r_{ij} = 1$ if X_i has bought P_i , 0 otherwise
- ◆Issues:
 - Sparsity
 - Mostly 0's. E.g. Amazon.com 2 million books, less than 0.1% is 1
 - Scalability
 - Very large data sets
 - Authority
 - Take into account similarity between products
 - E.g. paperback "Cold Mountain" is same as hardcover "Cold Mountain"

Finding Neighbors

- ◆Similar to clustering
 - · cluster around a given customer
- ◆First compute similarity between customers: $X_{a'} X_{b}$ • X_{a}^{\wedge} -- corresponding product vector

 - Cosine measure
 - Cosine of angle between vectors gives similarity
 - $Sim(X_{a'}, X_b) = X_a^{\land} \cdot X_b^{\land} / | X_a^{\land} | | X_b^{\land} |$
 - See class on Clustering for examples, more info

Neighbors

- ◆Pearson Correlation
 - How "proportional" are the vectors
 - Is there a linear relationship between them?
- ◆Good indicator of both strength and direction of similarity (correlation)
 - +1: strongly, positively correlated
 - 0 : no correlation
 - ◆ -1: strongly, negatively correlated

Example

$$X_a^{\ \ \ } = (1\ 2\ 3)$$

 $X_b^{\ \ \ \ } = (2\ 5\ 6)$

Pearson correlation measures how close to a line (1,2) (2,5) (3,6) are

$$Sim(X_{a'} X_b) = \underbrace{X_a^{\wedge}. X_b^{\wedge} - (\sum X_a^{\wedge} \sum X_b^{\wedge} / N)}_{}$$

$$sqrt((\sum X_a^2 - (\sum X_a^2)^2/N))(\sum X_b^2 - (\sum X_b^2)^2/N)))$$

= 0.9608 (strongly positively correlated)

Neighborhood

- ◆ Now compute neighborhood of X_a
 - Center-based
 - Select k closest neighbors to X_a
 - · Centroid-based
 - ullet Assume j closest neighbors selected
 - Select j+1st neighbor by picking customer closest to centroid of first j neighbors
 - Repeat 1..k

Generating Recommendations

- ◆From the neighborhood among products X_a has not bought yet, pick:
 - · most frequently occuring
 - Weighted Average based on similarity
 - · Based on Association Rules
- ◆See Sarwar et al (sections 1-3) (http://wwwusers.cs.umn.edu/~karypis/publications/Papers/PDF/ec00.pdf)

Example

	Shrek	Star Wars	MIB	Harry Potter	X-files
John		1	1		1
Jane	1	1	1		1
Pete			1	1	
Jeff	1	1			
Ellen	1	?	1	?	?

What new movie should we recommend to Ellen?

Similarity Function

	Shrek	Star Wars	MIB	Harry Potter	X-files	Similarity to Ellen
John		1	1		1	1/sqrt(6) = 0.41
Jane	1	1	1		1	1/sqrt(2) = 0.71
Pete			1	1		1/2
Jeff	1	1				1/2
Ellen	1	?	1	?	?	

Use Cosine measure for similarity

..

Neighbors

	Shrek	Star Wars	MIB	Harry Potter	X-files	Similarity to Ellen
John		1	1		1	0.41
<u>Jane</u>	1	1	1		1	0.71
<u>Pete</u>			1	1		0.5
<u>Jeff</u>	1	1				0.5
Ellen	1	?	1	?	?	

Use Center-based approach and pick 3 closest neighbors

33

Recommendation

	Shrek	Star Wars	MIB	Harry Potter	X-files	
Jane	1	1	1		1	
Pete			1	1		
Jeff	1	1				
Ellen	1	2	1	1	1	

Recommend Star Wars

34

Implementation Issues

- ◆Serious application
 - Large data sizes: millions of users * millions of products
 - CPU cycles
- ◆Scalability key
 - Partition the data set and the processing
- ♦Real-time vs Batch
 - Real-time can lead to poor response times
 - Real-time preferable recommend immediately after a customer purchase!
 - Incremental solution key for real time

35

Implementation Issues

- **♦**Sparsity
 - Use navigation history along with purchase history
 - Poorer data quality but reduces sparsity somewhat

Personalization with Limited Information

- ◆Based only on navigation history and current location of customer
- ◆Crucial to relate products to one another
 - Richer user experience
 - Each link drives potential revenue
 - Links built by human labor, explicit customer information, derived customer information, manufacturer info, etc...
 - · Much effort in online retailers spent here

37

Relating Products

- ◆Product Authority
 - Same as one another. E.g. paperback/h.c.
- ◆By Attributes
 - Same author, star, band, manufacturer,...
- ◆By Usage
 - Accessories
- ◆By Explicit User Grouping
 - Lists on Amazon.com
- ◆By Similar Customers Purchasing
 - Customers who bought A also bought B

38

□uality

- ◆ □uality between products and customers
 - Can use interchangeably in problem formulation
 - Real-life feasibility/value□
- ◆E.g. Recommender Systems
 - Use purchase history of customers to recommend new product most similar to other products bought by active customer
 - □If your □enky, check out this new Star Wars □□□
 - Use buying history of products to recommend new customer, most similar to other customers that have purchased the active product
 - □ If you on the Star Wars □ □ page, check out the home page of this customer from Seattle, WA

Summary

- ◆Product Selection is the essence of retailing
- ◆Personalization is unique to online retailing
 - Every customer can have their own store
- ◆Most successful personalization techniques, get customers to help one another
 - Algorithms, like C□ enable this interaction
- ◆In real life, algorithms are complex monsters due to scaling issues, repeated tweaking, etc...