
Chris Gregg, based on slides by Eric Roberts
CS 208E

September 27, 2018

The Analytical Engine

CS 208E—Topic Overview
Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Introductions; course overview; Babbage machines; Ada Lovelace

Karel the Robot; beginning JavaScript; algorithms

Binary arithmetic; digital logic

Stored-program machines; the Toddler machine

Turing machines; the Busy Beaver problem; undecidability

Computational complexity; the P = NP question

Cryptography; public-key cryptography; digital signatures

Networking; networking algorithms; Google page rank

Artificial intelligence; machine learning; big data

Computers and ethics; promise and peril of the digital age

Augusta Ada Byron,
Lady Lovelace (1815–1852)

Augusta Ada Byron, the daughter of the
English poet Lord Byron and his wife
Anne, was encouraged to pursue her
interests in science and mathematics at a
time when few women were allowed to
study those subjects. At the age of 17,
Ada met Charles Babbage and became
fascinated by his machines. Ada was
convinced of the potential of Babbage’s
Analytical Engine and wrote extensive
notes on its design, along with several
complex mathematical programs that
have led many people to characterize her
as the first programmer. In 1980, the
U.S. Department of Defense named the
programming language Ada in her honor.

Ada Byron, The First Programmer

The Analytical Engine
• As Babbage built prototypes of his Difference Engine, he began

to envision a much more powerful computing device he called
the Analytical Engine.

• Babbage’s initial notes on the Analytical Engine appear in 1837,
but the most complete description appears in a 1842 paper by
Luigi Federico Menabrea, who was reporting on a lecture
Babbage gave in 1840. Ada Lovelace translated Menabrea’s
paper from French into English and provided notes that were
three times longer than the original.

• The essential difference between the Difference Engine and the
Analytical Engine is that the Analytical Engine was designed to
be programmable, allowing users to perform any sequence of
calculations. The programs were encoded on punched cards in
the manner of the Jacquard loom, which Ada and her mother had
seen in their visits to the English industrial areas.

Jacquard Loom

Jacquard Loom

https://www.youtube.com/watch?v=K6NgMNvK52A

https://www.youtube.com/watch?v=K6NgMNvK52A

Products of the Jacquard Loom

Structure of the Analytical Engine

the “store”the “mill”

The Store and the Mill

The Analytical Engine: Computerphile

https://www.youtube.com/watch?v=5rtKoKFGFSM

http://www.eprg.org/computerphile/new-adatalk.pdf
Notes:

https://www.youtube.com/watch?v=5rtKoKFGFSM
http://www.eprg.org/computerphile/new-adatalk.pdf

The “Store”

• Each column holds a single integer as in the Difference Engine.
• Numbers in the Analytical Engine are signed.

• Each column has a numeric address: v0, v1, v2, v3, and so on.

The “Mill”

• The op indicator holds the current
operation (+, –, ×, ÷)

• The mill has five columns:
– I1 and I2 are the input values
– E is the output value
– I1ʹ and Eʹ are used to store extra

digits for the × and ÷ operations

• The runup indicator is set when
the result of an operation changes
sign.

Instructions for the Analytical Engine
N address value
+
–
×
÷

L address
Z address
S address
P address

Store value in address
Set the machine to addition
Set the machine to subtraction
Set the machine to multiplication
Set the machine to division

Load from address, preserving data
Load from address, clearing data
Store egress register in address
Print value in address

Program to Add Two Numbers
N 0 25
N 1 17

+
L 0
L 1
S 2
P 2

/* First number is in v0
/* Second number is in v1

/* Set machine for addition
/* Load first number into I1
/* A second load does the add
/* Store result in v2
/* Print the result

*/
*/

*/
*/
*/
*/
*/

Adding Control Operations
N address value
+
–
×
÷

L address
Z address
S address
P address
B number
F number
?B number
?F number

Store value in address
Set the machine to addition
Set the machine to subtraction
Set the machine to multiplication
Set the machine to division

Load from address, preserving data
Load from address, clearing data
Store egress register in address
Print value in address

Move backward specified number of cards
Move forward specified number of cards
Move backward if runup lever is set
Move forward if runup lever is set

Exercise: Produce a Table of Squares
Use the Analytical Engine to produce a table of squares.

0

1

4

9

16

25

49

64

81

The simplest approach is to simulate the operation used by the
Difference Engine to accomplish the same task.

Multiplication and Division
• Babbage recognized that multiplying two integers produces a

result that typically has twice the number of digits that appear in
the original values.

• To take account of this fact, the multiplication operation for the
Analytical Engine produces its result in a pair of columns.
Column E shows the low-order digits of the product, which are
the digits on the right that include the units value. Column Eʹ
shows the high-order digits.

• The division operation uses two columns to store the dividend.
You set up the division by loading the low-order digits into
column I1 and the high-order digits (if any) into column I1ʹ.

• As long as you know that the numbers won’t exceed the number
of digits in a column, you can ignore Eʹ and I1ʹ altogether.

Exercise: Calculate Factorials
How would you program the Analytical Engine to calculate the
factorial of a number supplied as data using a number card.

N ! = 1 × 2 × 3 × . . . × N

Bernoulli Numbers

Ada’s Program for Bernoulli Numbers

https://twobithistory.org/2018/08/18/ada-lovelace-note-g.html

https://twobithistory.org/2018/08/18/ada-lovelace-note-g.html

How the Analytical Engine Worked

The Mythical Man-Month
11. Plan to Throw One Away
In most projects, the first system built
is barely usable. It may be too slow,
too big, awkward to use, or all three.
There is no alternative but to start
again, smarting but smarter, and build
a redesigned version in which these
problems are solved. . . .

<p>The management quest ion,
therefore, is not whether to build a
pilot system and throw it away. You
will do that. The only question is
whether to plan in advance to build a
throwaway, or to promise to deliver the
throwaway to customers.

The End

