
Introductory Programming:
LOGO, Scratch, Karel the Robot, BASIC

Chris Gregg
Based on Slides from Eric Roberts

CS 208E
October 2, 2018

The Project LOGO Turtle
• In the 1960s, the late Seymour Papert

and his colleagues at MIT developed
the Project LOGO turtle and began
using it to teach schoolchildren how
to program.

• The LOGO turtle was one of the first
examples of a microworld, a simple,
s e l f - c o n t a i n e d p r o g r a m m i n g
environment designed for teaching.

• Papert described his experiences and
his theories about education in his
book Mindstorms, which remains one
of the most important books about
computer science pedagogy.

Programming the LOGO Turtle

to square
 repeat 4
 forward 40
 left 90
 end
end

to flower
 repeat 36
 square
 left 10
 end
end

The Logo Turtle in Python
$ python
Python 2.7.13 (v2.7.13:a06454b1afa1, Dec 17 2016, 12:39:47)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from turtle import *
>>> def sun():
... color('red','yellow')
... begin_fill()
... while True:
... forward(200)
... left(170)
... if abs(pos()) < 1:
... break
... end_fill()
... done()
...
>>> sun()

Hi!
• I’m Ben Allen, I’m a grad student in
the MS in CS Education program

• I hold a PhD from the Modern
Thought and Literature program,
where my committee included
members from Communication,
History, and Rhetoric

• I’m interested in interdisciplinary
research in computer science,
particularly in the history of
programming language design

• I’ve written articles defending widely
loathed programming languages

ˇ

“Software crisis”
• In the 1960s, the term “software

crisis” was used to describe the
major problem in computing –
because of the ongoing shortage of
trained programmers.

• This crisis never ended.
• Teaching good programming

practice quickly has been a
primary concern since the early
days of computing – and one
strategy is designing languages
that are at least supposed to be
quick to learn.

Bad ideas in computer history

How do we teach programming?
• How we teach programming depends

on what we think programming is.
• The COBOL idea was that we should

teach programming as English-
language instructions. This didn’t
work out…

• On the right here is Edsger Dijkstra,
maybe the most influential computer
scientist not from Stanford.

• Dijkstra argued that we should teach
programming as a radical novelty.

• Dijkstra on COBOL: “The use of
COBOL cripples the mind; its
teaching, therefore, should be
regarded as a criminal offense.

Cruelty, or, Dijkstra Teaches
Programming

• In “on the cruelty of really teaching computing science,”
Dijkstra laid out a plan of instruction that he would later
implement at UT Austin.

• For his intro to computing classes, he developed a
language for which there was no compiler, and banned his
students from using computers to test their programs.

• To Dijkstra, computing was best understood as a new
branch of formal mathematics. With every assignment,
students would have to prepare formal proofs of the
correctness of their programs.

• This worked… okay…

”Lifelong Kindergarten”

Sophisticated Scratch

How do students actually use scratch?

Educational programming and new
programming paradigms

• Consider that the first two widely used object
oriented languages (Smalltalk and Pascal) were
originally designed as educational languages, with
Smalltalk explicitly designed as a tool for
constructivist learning

• Object orientation is more or less ubiquitous now:
even fussy old COBOL supports it.

• Even if you’re not particularly interested in CS
education, paying attention to educational
programming might still be worthwhile.

Rich Pattis and Karel the Robot
• Karel the Robot was developed by

Rich Pattis in the 1970s when he was
a graduate student at Stanford.

• In 1981, Pattis published Karel the
Robot: A Gentle Introduction to the
Art of Programming, which became a
best-selling introductory text.

• Pattis chose the name Karel in honor
of the Czech playwright Karel Capek,
who introduced the word robot in his
1921 play R.U.R.

• In 2006, Pattis received the annual
award for Outstanding Contributions
to Computer Science Education given
by the ACM professional society.

ˇ
Rich Pattis

Meet Karel the Robot
• Karel the Robot was developed here at Stanford by Richard

Pattis over 30 years ago. Since then Karel has given many
generations of Stanford students a “gentle introduction” to
programming and problem solving.

+ + + + +

+ + + + +

+ + + + +

1

2

3

1 2 3 4 5

• Karel’s world is composed of streets and avenues numbered
from the southwest corner. (As in Manhattan, streets run east-
west and avenues run north-south.) In this world, Karel is
facing east at the corner of 1st Street and 1st Avenue.

• Karel’s world is surrounded by a solid wall through which it
cannot move. Depending on the problem, there may also be
walls in the interior of the world that block Karel’s passage.

• The only other objects that exist in Karel’s world are beepers,
which are small plastic cones that emit a quiet beeping noise.
In this world, for example, I’ve added a beeper to the corner of
1st Street and 2nd Avenue.

• Initially, Karel understands only four primitive commands:
move() Move forward one square
turnLeft() Turn 90 degrees to the left
pickBeeper() Pick up a beeper from the current square
putBeeper() Put down a beeper on the current square

Your First Challenge
• How would you program Karel to pick up the beeper and

transport it to the top of the ledge? Karel should drop the
beeper at the corner of 2nd Street and 4th Avenue and then
continue one more corner to the east, ending up on 5th Avenue.

+ + + + +

+ + + + +

+ + + + +

1

2

3

1 2 3 4 5

The moveBeeperToLedge Function

Comments

 Function implementing the desired action

/*
 * File: MoveBeeperToLedge.k
 * -------------------------
 * This program moves a beeper up to a ledge.
 */

function moveBeeperToLedge() {
 move();
 pickBeeper();
 move();
 turnLeft();
 move();
 turnLeft();
 turnLeft();
 turnLeft();
 move();
 putBeeper();
 move();
}

/*
 * File: MoveBeeperToLedge.k
 * -------------------------
 * This program moves a beeper up to a ledge.
 */

function moveBeeperToLedge() {
 move();
 pickBeeper();
 move();
 turnLeft();
 move();
 turnLeft();
 turnLeft();
 turnLeft();
 move();
 putBeeper();
 move();
}

Defining New Functions
• A Karel program consists of a collection of functions, each of

which is a sequence of statements that has been collected
together and given a name. The pattern for defining a new
function looks like this:

function name() {
 statements that implement the desired operation
}

• In patterns of this sort, the boldfaced words are fixed parts of
the pattern; the italicized parts represent the parts you can
change. Thus, every helper function will include the keyword
function along with the parentheses and braces shown. You
get to choose the name and the sequence of statements
performs the desired operation.

The turnRight Function
• As a simple example, the following function definition allows

Karel to turn right by executing three turnLeft operations:
function turnRight() {
 turnLeft();
 turnLeft();
 turnLeft();
}

• Once you have made this definition, you can use turnRight
in your programs in exactly the same way you use turnLeft.

• In a sense, defining a new function is analogous to teaching
Karel a new word. The name of the function becomes part of
Karel’s vocabulary and extends the set of operations the robot
can perform.

Adding Functions to a Program
/*
 * File: MoveBeeperToLedge.k
 * -------------------------
 * This program moves a beeper up to a ledge using turnRight.
 */

function moveBeeperToLedge() {
 move();
 pickBeeper();
 move();
 turnLeft();
 move();
 turnRight();
 move();
 putBeeper();
 move();
}

function turnRight() {
 turnLeft();
 turnLeft();
 turnLeft();
}

Exercise: Defining Functions
• Define a function called turnAround that turns Karel around

180 degrees without moving.

• Define a function backup that moves Karel backward one
square, leaving Karel facing in the same direction.

function turnAround() {
 turnLeft();
 turnLeft();
}

function backup() {
 turnAround();
 move();
 turnAround();
}

Control Statements
• In addition to allowing you to define new functions, Karel also

includes three statement forms that allow you to change the
order in which statements are executed. Such statements are
called control statements.

• The control statements available in Karel are:
– The repeat statement, which is used to repeat a set of

statements a predetermined number of times.
– The while statement, which repeats a set of statements as long

as some condition holds.
– The if statement, which applies a conditional test to determine

whether a set of statements should be executed at all.
– The if-else statement, which uses a conditional test to choose

between two possible actions.

The repeat Statement
• In Karel, the repeat statement has the following form:

repeat (count) {
 statements to be repeated
}

• Like most control statements, the repeat statement consists of
two parts:
– The header line, which specifies the number of repetitions
– The body, which is the set of statements affected by the repeat

• Note that most of the header line appears in boldface, which
means that it is a fixed part of the repeat statement pattern.
The only thing you are allowed to change is the number of
repetitions, which is indicated by the placeholder count.

repeat (count) {
 statements to be repeated
}

Using the repeat Statement
• You can use repeat to redefine turnRight as follows:

function turnRight() {
 repeat (3) {
 turnLeft();
 }
}

• The following function creates a square of four beepers,
leaving Karel in its original position:

function makeBeeperSquare() {
 repeat (4) {
 putBeeper();
 move();
 turnLeft();
 }
}

Conditions in Karel
• Karel can test the following conditions:

frontIsClear() frontIsBlocked()

leftIsClear() leftIsBlocked()

rightIsClear() rightIsBlocked()

beepersPresent() noBeepersPresent()

beepersInBag() noBeepersInBag()

facingNorth() notFacingNorth()

facingEast() notFacingEast()

facingSouth() notFacingSouth()

facingWest() notFacingWest()

positive condition negative condition

The while Statement
• The general form of the while statement looks like this:

• The simplest example of the while statement is the function
moveToWall, which comes in handy in lots of programs:

function moveToWall() {
 while (frontIsClear()) {
 move();
 }
}

while (condition) {
 statements to be repeated
}

The if and if-else Statements
• The if statement in Karel comes in two forms:

– A simple if statement for situations in which you may or may
not want to perform an action:

if (condition) {
 statements to be executed if the condition is true
}

if (condition) {
 statements to be executed if the condition is true
} else {
 statements to be executed if the condition is false
}

– An if-else statement for situations in which you must choose
between two different actions:

function test() {
 putBeeperLine();
 turnLeft();
 putBeeperLine();
}

1 2 3 4 5

1

2

3

2

Exercise: Creating a Beeper Line
• Write a function putBeeperLine that adds one beeper to every

intersection up to the next wall.
• Your function should operate correctly no matter how far

Karel is from the wall or what direction Karel is facing.
• Consider, for example, the following function called test:

Climbing Mountains
• Our next task explores the use of functions and control

statements in the context of teaching Karel to climb stair-step
mountains that look something like this:

1

1 2 3 4 5 6 7

2

3

• Our first program will work only in a particular world, but the
goal is to have Karel be able to climb any stair-step mountain.

Stepwise Refinement
• The most effective way to solve a complex problem is to break

it down into successively simpler subproblems.
• You start by breaking the whole task down into simpler parts.
• Some of those tasks may themselves need subdivision.
• This process is called stepwise refinement or decomposition.

Complete Task

Subtask #1 Subtask #2 Subtask #3

Subsubtask #2a Subsubtask #2b

Criteria for Choosing a Decomposition
The proposed steps should be easy to explain. One
indication that you have succeeded is being able to find
simple names.

1.

The steps should be as general as possible. Programming
tools get reused all the time. If your functions perform
general tasks, they are much easier to reuse.

2.

The steps should make sense at the level of abstraction at
which they are used. If you have a function that does the
right job but whose name doesn’t make sense in the context
of the problem, it is probably worth defining a new function
that calls the old one.

3.

Exercise: Banishing Winter
• In this problem, Karel is supposed to usher in springtime by

placing bundles of leaves at the top of each “tree” in the world.
• Given this initial world, the final state should look like this:

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

5

4

3

2

1 + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

5

4

3

2

1

Understanding the Problem
• One of the first things you need to do given a problem of this

sort is to make sure you understand all the details.
• In this problem, it is easiest to have Karel stop when it runs

out of beepers. Why can’t it just stop at the end of 1st Street?

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

5

4

3

2

1 + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

5

4

3

2

1

The Top-Level Decomposition
• You can break this program down into two tasks that are

executed repeatedly:
– Find the next tree.
– Decorate that tree with leaves.

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

5

4

3

2

1

☛ ☞
☛ ☞

BASIC

The BASIC language, created in 1964 by John G. Kemeny and
Thomas E. Kurtz at Dartmouth, was the programming language that
was included with home computers during the 1970s and 1980s.

The language was usually included in ROM, so that when the
computer booted up, users could immediately start programming.

BASIC
BASIC was designed
so that students in
non-scientific fields
could learn to
program.

Students learned
BASIC in school, or
by reading books that
had listing of
programs (often
games) that they could
type in relatively
quickly.

Family Computing Magazine, July 1985

BASIC
While BASIC was relatively easy to learn, and while it introduced
millions of kids to programming, it is not a particularly good language
(at least the 1980s version — today, Visual Basic is decent). It is not

Famously, Edsgar Dijkstra said, in 1975, "It is practically impossible
to teach good programming to students that have had a prior exposure
to BASIC: as potential programmers they are mentally mutilated
beyond hope of regeneration."

Students who learned BASIC on their own do, indeed, have some
trouble graduating to a structured language such as C, Java,
Javascript, etc., but it is probably not as dire as Dijkstra led on.

The End

