
Thursday, November 14th, 2019
Chris Gregg

reading:

https://www.archive.ece.cmu.edu/~ganger/712.fall02/

papers/p761-thompson.pdf

CS 208e
Reflections on Trusting Trust

https://www.archive.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
https://www.archive.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

Ken Thompson
• Ken Thompson is the creator of the Unix

operating system, and a number of notable
programming languages, including B, the
predecessor to C, and of Go while at Google
(where he still works).

• Most of his career was spent at Bell Labs, where
he worked on Unix, and also made notable
contributions to regular expression parsing, and
the definition of the UTF-8 encoding scheme.

• He is a Turing award winner (1983, along with
Dennis Ritchie), and this lecture will focus on his
acceptance speech for that award, which is
considered a seminal computer security paper.

Reflections on Trusting Trust - Stage I
• “I am a programmer. On my 1040 form, that is what I put down as my occupation. As

a programmer, I write programs. I would like to present to you the cutest program I
ever wrote. I will do this in three stages and try to bring it together at the end.”

• “In college, before video games, we would amuse ourselves by posing programming
exercises. One of the favorites was to write the shortest self-reproducing program.
Since this is an exercise divorced from reality, the usual vehicle was FORTRAN.
Actually, FORTRAN was the language of choice for the same reason that three-legged
races are popular.”

• “More precisely stated, the problem is to write a source program that, when compiled
and executed, will produce as output an exact copy of its source.”

• If you have never done this, I urge you to try it on your own. The discovery of how to
do it is a revelation that far surpasses any benefit obtained by being told how to do it.

• Thomson is talking about a quine, https://en.wikipedia.org/wiki/Quine_(computing)

From the Wikipedia article:

Quines

A quine is a non-empty computer program which takes no input and
produces a copy of its own source code as its only output. The
standard terms for these programs in the computability theory and
computer science literature are "self-replicating programs", "self-
reproducing programs", and "self-copying programs”.

• The name "quine" was coined by Douglas Hofstadter, in his popular science book
Gödel, Escher, Bach: An Eternal Golden Braid

• Let’s take a few minutes to try and write a quine! Use whatever language you want,
and just jot down some code — your brain will stretch a bit from the exercise.

https://en.wikipedia.org/wiki/Quine_(computing)
https://en.wikipedia.org/wiki/Douglas_Hofstadter
https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach:_An_Eternal_Golden_Braid

Chris’s Mediocre Attempt
#!/usr/bin/env python

newline=chr(10)
quote=chr(39)
eq=chr(61)
a='#!/usr/bin/env python'
b='newline=chr(10)'
c='quote=chr(39)'
d='eq=chr(61)'
e='print(a+newline+newline+b+newline+c+newline+d+newline+chr(97)+e
q+quote+a+quote+newline+chr(98)+eq+quote+b+quote+newline+chr(99)+e
q+quote+c+quote+newline+chr(100)+eq+quote+d+quote+newline+chr(101)
+eq+quote+e+quote+newline+e)'
print(a+newline+newline+b+newline+c+newline+d+newline+chr(97)+eq+q
uote+a+quote+newline+chr(98)+eq+quote+b+quote+newline+chr(99)+eq+q
uote+c+quote+newline+chr(100)+eq+quote+d+quote+newline+chr(101)+eq
+quote+e+quote+newline+e)

A Very Concise Python Quine

s = 's = %r\nprint(s%%s)'
print(s%s)

$ python conciseQuine.py
s = 's = %r\nprint(s%%s)'
print(s%s)

$ python conciseQuine.py | python | python | python
s = 's = %r\nprint(s%%s)'
print(s%s)

You can check a quine in a unix system by piping the output back to another interpreter:

Ouroboros Quines and Multiquines

An Ouroboros quine, also known as a quine-relay, is a quine that is written in one
language, outputs a program in another language, which, when run, outputs the original
program in the original language.

This can be extended to multiple levels of recursion. See the example from the lecture
code.

From Wikjipedia:
David Madore, creator of Unlambda, describes multiquines as follows:
"A multiquine is a set of r different programs (in r different languages — without
this condition we could take them all equal to a single quine), each of which is
able to print any of the r programs (including itself) according to the command
line argument it is passed. (Note that cheating is not allowed: the command
line arguments must not be too long — passing the full text of a program is
considered cheating)."

An Astounding Ouroboros Quine

https://github.com/mame/quine-relay

https://github.com/mame/quine-relay

Reflections on Trusting Trust - Stage II
“The C compiler is written in C. What I am about to describe is one of many "chicken
and egg" problems that arise when compilers are written in their own language. In this
ease, I will use a specific example from the C compiler.

“C allows a string construct to specify an initialized character array. The individual
characters in the string can be escaped to represent unprintable characters. For
example,

 "Hello world\n"

represents a string with the character "\n," representing the new line character.”

Reflections on Trusting Trust - Stage II

"Figure 2 is an idealization of the code in the C
compiler that interprets the character escape
sequence. This is an amazing piece of code. It
"knows" in a completely portable way what
character code is compiled for a new line in any
character set. The act of knowing then allows it to
recompile itself, thus perpetuating the knowledge.”

Figure 2

Reflections on Trusting Trust - Stage II
“Suppose we wish to alter the C compiler to
include the sequence "\v" to represent the vertical
tab character. The extension to Figure 2 is obvious
and is presented in Figure 3. We then recompile
the C compiler, but we get a diagnostic. Obviously,
since the binary version of the compiler does not
know about "\v," the source is not legal C. We
must "train" the compiler. After it "knows" what
"\v" means, then our new change will become
legal C. We look up on an ASCII chart that a
vertical tab is decimal 11. We alter our source to
look like Figure 4. Now the old compiler accepts
the new source. We install the resulting binary as
the new official C compiler and now we can write
the portable version the way we had it in Figure 3.”

Figure 3

Reflections on Trusting Trust - Stage II

“This is a deep concept. It is as close to a
"learning" program as I have seen. You simply tell
it once, then you can use this self-referencing
definition.”

Figure 4

Reflections on Trusting Trust - Stage III

“Again, in the C compiler, Figure 5 represents the
high-level control of the C compiler where the
routine "compile" is called to compile the next line
of source. Figure 6 shows a simple modification to
the compiler that will deliberately miscompile
source whenever a particular pattern is matched. If
this were not deliberate, it would be called a
compiler "bug." Since it is deliberate, it should be
called a "Trojan horse." ”

Figure 5

Figure 6

Reflections on Trusting Trust - Stage III
“The actual bug I planted in the compiler would match code in the UNIX "login"
command. The replacement code would miscompile the login command so
that it would accept either the intended encrypted password or a particular
known password. Thus if this code were installed in binary and the binary were
used to compile the login command, I could log into that system as any user.

Such blatant code would not go undetected for long. Even the most casual
perusal of the source of the C compiler would raise suspicions.”

This is a critical point: finding this Trojan Horse would be easy at this point —
just look at the source code of the compiler, and there it is!

Reflections on Trusting Trust - Stage III
“The final step is represented in Figure 7. This
simply adds a second Trojan horse to the one
that already exists. The second pattern is
aimed at the C compiler. The replacement
code is a Stage I self-reproducing program
that inserts both Trojan horses into the
compiler. This requires a learning phase as in
the Stage II example. First we compile the
modified source with the normal C compiler to
produce a bugged binary. We install this binary
as the official C. We can now remove the bugs
from the source of the compiler and the new
binary will reinsert the bugs whenever it is
compiled. Of course, the login command will
remain bugged with no trace in source
anywhere. ”

Figure 7

Reflections on Trusting Trust - Moral

The moral is obvious. You can't trust code that you did not totally create yourself.
(Especially code from companies that employ people like me.) No amount of
source-level verification or scrutiny will protect you from using untrusted code. In
demonstrating the possibility of this kind of attack, I picked on the C compiler. I
could have picked on any program-handling program such as an assembler, a
loader, or even hardware microcode. As the level of program gets lower, these bugs
will be harder and harder to detect. A well installed microcode bug will be almost
impossible to detect.

Countering “Trusting Trust”
https://www.schneier.com/blog/archives/2006/01/countering_trus.html

“Wheeler explains how to defeat this more robust attack. Suppose we have two completely
independent compilers: A and T. More specifically, we have source code SA of compiler A, and
executable code EA and ET. We want to determine if the binary of compiler A -- EA -- contains this
trusting trust attack.
Here's Wheeler's trick:
Step 1: Compile SA with EA, yielding new executable X.
Step 2: Compile SA with ET, yielding new executable Y.
Since X and Y were generated by two different compilers, they should have different binary code but
be functionally equivalent. So far, so good. Now:
Step 3: Compile SA with X, yielding new executable V.
Step 4: Compile SA with Y, yielding new executable W.
Since X and Y are functionally equivalent, V and W should be bit-for-bit equivalent.
And that's how to detect the attack. If EA is infected with the robust form of the attack, then X and
Y will be functionally different. And if X and Y are functionally different, then V and W will be bitwise
different. So all you have to do is to run a binary compare between V and W; if they're different, then
EA is infected.”

https://www.schneier.com/blog/archives/2006/01/countering_trus.html

The Ken Thompson Hack in the Real World

https://nakedsecurity.sophos.com/2009/08/18/compileavirus/

https://nakedsecurity.sophos.com/2009/08/18/compileavirus/

References and Advanced Reading
•References:
•https://www.archive.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
•http://wiki.c2.com/?TheKenThompsonHack
•https://www.win.tue.nl/~aeb/linux/hh/thompson/trust.html
•https://en.wikiquote.org/wiki/Ken_Thompson
•https://en.wikipedia.org/wiki/Quine_(computing)
•https://github.com/mame/quine-relay
•https://www.schneier.com/blog/archives/2006/01/countering_trus.html

•Advanced Reading:
•https://softwareengineering.stackexchange.com/questions/184874/is-ken-
thompsons-compiler-hack-still-a-threat

•http://www.madore.org/~david/computers/quine.html
•https://nolancaudill.com/how-to-build-a-quine-eb717bfb7f1f
•http://www.computerhistory.org/fellowawards/hall/ken-thompson/
•https://www.youtube.com/watch?v=tc4ROCJYbm0
•https://www.youtube.com/watch?v=JoVQTPbD6UY

https://www.archive.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
http://wiki.c2.com/?TheKenThompsonHack
https://www.win.tue.nl/~aeb/linux/hh/thompson/trust.html
https://en.wikiquote.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Quine_(computing)
https://github.com/mame/quine-relay
https://www.schneier.com/blog/archives/2006/01/countering_trus.html
https://softwareengineering.stackexchange.com/questions/184874/is-ken-thompsons-compiler-hack-still-a-threat
https://softwareengineering.stackexchange.com/questions/184874/is-ken-thompsons-compiler-hack-still-a-threat
http://www.madore.org/~david/computers/quine.html
https://nolancaudill.com/how-to-build-a-quine-eb717bfb7f1f
http://www.computerhistory.org/fellowawards/hall/ken-thompson/
https://www.youtube.com/watch?v=tc4ROCJYbm0
https://www.youtube.com/watch?v=JoVQTPbD6UY

