Introductory Programming;:
LOGO, Scratch, Karel the Robot, Bit, Pascal, BASIC

Chris Gregg
Based on Slides from Eric Roberts
CS 208E
Sept 27, 2021

The Project LOGO Turtle

e In the 1960s, the late Seymour Papert
and his colleagues at MIT developed
the Project LOGO turtle and began
using it to teach schoolchildren how
to program.

* The LOGO turtle was one of the first
examples of a microworld, a simple,
self-contained programming
environment designed for teaching.

« Papert described his experiences and
his theories about education in his
book Mindstorms, which remains one

All about LOGO —

Of the mOSt important bOOkS about ow it was invented
computer science pedagogy. and Bt it works

Programming the LOGO Turtle

to square
repeat 4
forward 40
left 90
end
end

to flower
repeat 36
square

left 10
end

end

The Logo Turtle in Python

% python3

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec

7 2020, 12:10:52)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits"

>>> from turtle import *
>>> import turtle

>>> def square():
KeyboardInterrupt

>>> def square(t):

oo for i in range(4):
.o t.forward (40)
.on t.left (90)

>>> def flower(t):

.o for i in range(36):
oo square(t)

.o t.left(10)

>>> flower (turtle.Turtle())

or "license"

for more information.

A Logo Sun 1n Python

% python3

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:10:52)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> from turtle import *

>>> def sun():

cee color('red', 'yellow')
oo begin_fill()

.o while True:

.o forward (200)

e left (170)

oo if abs(pos()) < 1:
.o break

cee end fill()

.o done ()

>>> sun()

Scratch

* Scratch 1s a high-level, "block” based programming language,
targeted at children to introduce them to programming.

[t was launched to the public in 2007

- It1is a particularly unique
1 b fit
anguage because of its
block nature, but also
because it 1s event-driven
(e.g., mouse clicks, key
presses, timing, etc.

wotox € v @ determine what happens)

point in direction @

@ concs * There are tens of millions of
move () steps Scratch projects, and Scratch
m C* @) dearss has been listed as one of the
top-20 most popular
languages

https://scratch.mit.edu/projects/editor/?tutorial=getStarted

Scratch

» Scratch does have its criticisms:

e Students who program in Scratch can end up with overly-
complicated programs because of the event-driven model.

e Students may have a hard
time translating from
Scratch to text-based
languages

e Students "age-out" of

wotox €D v O scratch (1.e., "this 1s for

pointn dirction (@) kids!") without getting deep
05 enough. Scratch 1s actually a

B robust language that has

many interesting features,

but most students never see
those features.

Rich Pattis and Karel the Robot

Karel the Robot was developed by
Rich Pattis in the 1970s when he was
a graduate student at Stanford.

In 1981, Pattis published Karel the
Robot: A Gentle Introduction to the
Art of Programming, which became a
best-selling introductory text.

Pattis chose the name Karel/ in honor
of the Czech playwright Karel Capek,
who introduced the word robot 1n his
1921 play R.U.R.

In 2006, Pattis received the annual
award for Outstanding Contributions
to Computer Science Education given
by the ACM professional society.

Bit
 Depending on who i1s teaching CS106A at Stanford, either
Karel or Bit might be used to introduce programming to

students. Karel has been used for many generations at Stanford
and other universities.

« Bitis a derivative of Karel (and looks very similar), created by

Stanford lecturer Nick Parlante for a revised version of
CS106A.

Meet Bit

« Bit lives 1n a grid world, and can move through the world one
square at a time (the dashed grid lines are not shown when
using Bit)

 Bit 1s currently facing to the right, and will move right if given
a move command.

I I
I I
I I
I I
i e e i
I
I
I
I

|

|

| !

————l————| ————————
T I~

!

——m e o

Meet Bit

« Bit cannot move past the end of the grid (the outer walls), or
there 1s an error.

Meet Bit

Bit cannot move past the end of the grid (the outer walls), or
there 1s an error.

There might also be inner walls, which are black. Bit cannot
move through those walls, either.

Meet Bit

There might also be nner walls, which are black. Bit cannot
move through those walls, either.

Squares can be colored red, green, or blue, and Bit can move
over those just fine (1.e., they are not walls).

Meet Bit

 Bit starts out understanding a small number of action commands:

 bit.left() turn left

* bit.right() turnright

* bit.move() move in the direction Bit 1s facing

* bit.paint(color) paint the square 'red', 'green', Or 'blue'
 bit.erase() clear the color under bit (back to white)

Your First Challenge

 How would you program Bit to erase the red square, and put a
red square "on top" of the "ledge" (the black wall), with Bit
ending up on the right side of the ledge, still facing right?

Your First Challenge

 How would you program Bit to erase the red square, and put a
red square "on top" of the "ledge" (the black wall), with Bit
ending up on the right side of the ledge, still facing right?

The moveRedSquareToLedge Function

// This program moves the red square up to a ledge.

function moveRedSquareTolLedge (bit) ({

bit.move() ;

bit.erase() ;

bit.move() ;

bit.left();

bit.move() ;

bit.right() ;

bit.move() ;

bit.paint('red') ;

bit.move() ;

The moveRedSquareToEdge Function

--

function moveRedSquareTolLedge (bit) ({

bit.move() ;

bit.erase() ;

bit.move() ;

bit.left();

bit.move() ;

bit.right() ;

bit.move() ;

bit.paint('red') ;

bit.move() ;

The moveRedSquareToEdge Function

’
. Comment
L}

:j/ This program moves the red square up to a ledge.

1 4

--

/function moveRedSquareToLedge (bit) ({

bit.move() ;
bit.move() ;
bit.left();
bit.move() ;
bit.right() ;
bit.move() ;
bit.paint('red') ;
bit.move() ;

[e O ST

o OE E E E E W O E W W EE W EmEm

--

The moveRedSquareToEdge Function

Notice that the program on the prior slides is in Javascript
— for CS106A, which is taught in Python, Bit understands
Python:

This program moves the red square up to a ledge.

def moveRedSquareToLedge (bit) :

bit.move ()

bit.erase()

bit.move ()

bit.left()

bit.move ()

bit.right()

bit.move ()
bit.paint('red')
bit.move ()

Defining New Functions

* A Bit program consists of a collection of functions, each of
which 1s a sequence of statements that has been collected
together and given a name. The pattern for defining a new
function looks like this:

function name() {
statements that implement the desired operation

}

* In patterns of this sort, the boldfaced words are fixed parts of
the pattern; the italicized parts represent the parts you can
change. Thus, every helper function will include the keyword
function along with the parentheses and braces shown. You
get to choose the name and the sequence of statements
performs the desired operation.

Adding Functions to a Program

// This program moves the red squad up to a ledge.
// And then moves Bit back down again

function moveRedSquareToLedge (bit) {
bit.move () ;
bit.erase() ;
bit.move () ;
bit.left ()
bit.move () ;
bit.right() ;
bit.move () ;
bit.paint('red') ;
bit.move () ;
turnAround (bit) ;
moveBackDown (bit) ;

}

function turnAround(bit) ({
bit.right();
bit.right() ;

}

function moveBackDown (bit) {
bit.move () ;
bit.move() ;
bit.left();
bit.move () ;
bit.right() ;
bit.move() ;
bit.move() ;
turnAround (bit) ;

Exercise: Defining Functions

e Define a function called turnAround that turns Bit around 180
degrees without moving.

function turnAround(bit) {
bit.right() ;
bit.right() ;

}

 Define a function backup that moves Karel backward one
square, leaving Karel facing in the same direction.

function backup (bit) {
turnAround (bit) ;
bit.move () ;
turnAround (bit) ;

Control Statements

* In addition to allowing you to define new functions, Bit also
allows standard Javascript (or Python) control statements:

 The control statements available in Karel are:

— The while statement, which repeats a set of statements as long
as some condition holds.

— The if statement, which applies a conditional test to determine
whether a set of statements should be executed at all.

— The if-else statement, which uses a conditional test to choose
between two possible actions.

Conditions 1n Bit

Bit can test the following conditions:

bit.front clear()

bit.left clear()

bit.right clear()

bit.get color()

The first three conditions can be used to tell whether there 1s a
wall in front of, or to the left/right of Bit. These are useful to
continue walking in a direction until a wall appears, or a wall
begins or ends.

The bit.get color() function returns either 'red’,
'green', 'blue’, or null, depending on what color 1s at Bit's
position.

The while Statement

» The general form of the while statement looks like this:

while (condition) ({
statements to be repeated

}

« The simplest example of the while statement 1s the function
moveToWall, which comes in handy in lots of programs:

function moveToWall () {
while (bit.front clear()) {
bit.move () ;

}

The if and if-else Statements

« The if statement in Bit comes in two forms:

— A simple if statement for situations in which you may or may
not want to perform an action:

if (condition) {
statements to be executed if the condition is true

}

— An if-else statement for situations in which you must choose
between two different actions:

if (condition) {

statements to be executed if the condition is true
} else {

statements to be executed if the condition is false

}

Exercise: Creating a Green Line

Write a function colorLine (color) that colors each square
up to a wall in the direction Bit 1s traveling.

Your function should operate correctly no matter how far Bit 1s
from the wall or what direction Bit 1s facing.

Consider, for example, the following function called test:

function test(bit) {
colorlLine (bit, 'blue');
bit.left () ;
colorLine (bit, 'green');

Exercise: Creating a Green Line

function test(bit) {
colorLine (bit, 'blue');
bit.left () ;
colorLine (bit, 'green')

}

function colorlLine(bit, color)
{
bit.paint(color) ;
while (bit.front clear()) {
bit.move () ;
bit.paint(color) ;

Pascal

program HelloWorld;

var
i: integer;
s: string;

begin
i := 10;
repeat
str(i, s);
Writeln('Hello world! ' + s);
i:=1i-1;
until i = 0;
end.

was invented by (future) Turing Award winner and former
Stanford professor, in 1970 (a few years after he left

Stanford).

Wirth designed it to be a small language that encouraged good style, and
because of this i1t was used in many universities (including Stanford) in
the 1970s and 1980s (and eventually generally replaced by C).

https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Niklaus_Wirth
https://onlinegdb.com/G_g_tcAHt

Pascal
program ReverseString; Pascal had some interesting

function revstr (my s:string) :string; featur.es: IlOtEll?lYI
var e variable assignment used

Te 5. inteosr; ":=" instead of "=",
begin allowing for a more
out_s ==t}'1' " . beginner-friendly syntax
for i1l tém{;sc)j(; * string lengths were part of
out_s:=out_ s+my_ s[ls-i+l]; the string type (and strings
revstr:=out s; .
end: - were not O-terminated, but
rather had their length
var . 5
original, reversed: string; %I;lbedded 1n ﬂil)el Strlng)(°1
1s was a problem, an
begin . .
original := 'Hello World': necessitated changing the
reversed := revstr (original); language, eventually (6. Lo
Writeln('Original: ' + original); thiS made it almost
Writeln ('Reversed: ' + reversed);
end. impossible to write a sorting

library).

https://onlinegdb.com/OCc9XJW57

func
beg
i

end;

var
n

beg

Pascal

tion factorial(n: integer): integer;

in
fn=20
then
factorial := 1
else
factorial := nxfactorial(n-1)

umber: integer;

in
number := 15;
Writeln(factorial(number));

end.

Pascal gained a huge following
in the mid-1980s when

by Borland was released.
It was inexpensive, and came
with a built-in Integrated
Development Environment
(IDE) that allowed programmers
an easy way to write programs
that compiled to machine code,
and that were extremely fast (see
the Wikipedia article for an
interesting anecdote about Bill
Gates).

Turbo Pascal also shipped on a
single 360KB floppy disk,
meaning it could be used on
virtually any 1980s vintage PC.

https://en.wikipedia.org/wiki/Turbo_Pascal
https://en.wikipedia.org/wiki/Turbo_Pascal
https://en.wikipedia.org/wiki/Turbo_Pascal
https://onlinegdb.com/xVT592imt

The BASIC language, created in 1964 by John G. Kemeny and
Thomas E. Kurtz at Dartmouth, was the programming language that
was included with home computers during the 1970s and 1980s.

The language was usually included in ROM, so that when the
computer booted up, users could immediately start programming.

BASIC was designed
so that students in
non-scientific fields
could learn to
program.

Students learned
BASIC 1n school, or
by reading books that
had listing of
programs (often
games) that they could
type 1n relatively
quickly.

BASIC

Commodore 64/Age Splitter

19 PRINT CHR$(147);

20 PRINT "TYPE YOUR ANSWER; THEN PRESS <RETURN>."
39 PRINT

49 PRINT "HOW MANY YEARS OLD ARE YOU";
5@ INPUT AGE

6@ PRINT CHRS(147);

79 PRINT “IF YOU ARE";AGE;"YEARS OLD,"
80 PRINT "YOU HAVE LIVED MORE THAN ..."
99 PRINT

199 PRINT AGE*12;"MONTHS, OR"

110 PRINT AGE*52;"WEEKS, OR"

120 PRINT AGE*365;"DAYS, OR"

130 PRINT AGEx365%24;"HOURS, OR"

149 PRINT AGE*365%24%6@;""MINUTES, OR"
150 PRINT AGE*365%24x60%60;" SECONDS."
169 PRINT

179 PRINT "PRESS <P> TO PLAY AGAIN, OR <@> TO QUIT."
189 GET K$

199 IF KS="P" THEN 19

200 IF K$<>"Q" THEN 189

219 END

IBM PCs/Age Splitter

19 KEY OFF

29 CLS

3@ PRINT "TYPE YOUR ANSWER; THEN PRESS <ENTER>."
49 PRINT

5@ PRINT "HOW MANY YEARS OLD ARE YOU";
60 INPUT AGE

79 CLS

80 PRINT "IF YOU ARE";AGE;"YEARS OLD,"
99 PRINT "YOU HAVE LIVED MORE THAN ..."
199 PRINT

119 PRINT AGE*12;'"MONTHS, OR"

129 PRINT AGE*52;"WEEKS, OR"

139 PRINT AGE*365;"DAYS, OR"

149 PRINT AGE*365%24;"HOURS, OR"

159 PRINT AGE*365%24%60;'"MINUTES, OR"
160 PRINT AGE*365%24*60*60; " SECONDS."
179 PRINT

180 PRINT "PRESS <P> TO PLAY AGAIN,"
199 PRINT "OR <Q@> TO QUIT."

209 K$=INKEYS

219 IF K$="P" THEN 20

220 IF K$<>"Q" THEN 209

239 END

TRS-80 Color Computer/Age Splitter
19 CLS

29 PRINT "TYPE YOUR ANSWER;"

30 PRINT "THEN PRESS <ENTER>."

49 PRINT

S@ PRINT "HOW MANY YEARS OLD ARE YOU";
60 INPUT AGE

79 CLS

89 PRINT "IF YOU ARE";AGE;"YEARS OLD,"
99 PRINT "YOU HAVE LIVED MORE THAN ..."
109 PRINT

119 PRINT AGE*12;"MONTHS, OR"

120 PRINT AGEx52;"WEEKS, OR"

130 PRINT AGE*365;'DAYS, OR"

149 PRINT AGE*365%24;"HOURS, OR"

150 PRINT AGE*365%24%60;""MINUTES, OR"
160 PRINT AGE*365%24%60*60;' SECONDS."
179 PRINT

180 PRINT "PRESS <P> TO PLAY AGAIN,"
199 PRINT "OR <@> TO QUIT.”

200 KS=INKEYS

219 IF K$="P" THEN 190

220 IF K$<>"Q" THEN 209

230 END

TRS-80 Model lll/Age Splitter

19 CLS

20 PRINT "TYPE YOUR ANSWER; THEN PRESS <ENTER>."
39 PRINT

49 PRINT "HOW MANY YEARS OLD ARE YOU";

50 INPUT AGE

69 CLS

79 PRINT "IF YOU ARE";AGE;"YEARS OLD, YOU HAVE LIVED M
ORE THAN ..."

80 PRINT

99 PRINT AGE*12;"MONTHS, OR"

100 PRINT AGEx52;"WEEKS, OR"

119 PRINT AGE*365;'"DAYS, OR"

120 PRINT AGE*365%24;'"HOURS, OR"

139 PRINT AGE*365%24*60;""MINUTES, OR"

149 PRINT AGE*365%24%6@%60; " SECONDS."

150 PRINT

160 PRINT "PRESS <P> TO PLAY AGAIN, OR <@> TO QUIT."
170 KS=INKEYS

189 IF K$="P" THEN 19

199 IF K$<>"Q" THEN 179

209 END

Family Computing Magazine, July 1985

BASIC

While BASIC was relatively easy to learn, and while it introduced
millions of kids to programming, it 1s not a particularly good language
(at least the 1980s version — today, Visual Basic 1s decent).

Famously, Edsgar Dijkstra said, in 1975, "It 1s practically impossible
to teach good programming to students that have had a prior exposure
to BASIC: as potential programmers they are mentally mutilated
beyond hope of regeneration."

Students who learned BASIC on their own do, indeed, have some
trouble graduating to a structured language such as C, Java,
Javascript, etc., but it is probably not as dire as Dijkstra led on.

The End

