
Introductory Programming:

LOGO, Scratch, Karel the Robot, Bit, Pascal, BASIC

Chris Gregg

Based on Slides from Eric Roberts

CS 208E

Sept 27, 2021

The Project LOGO Turtle
• In the 1960s, the late Seymour Papert

and his colleagues at MIT developed
the Project LOGO turtle and began
using it to teach schoolchildren how
to program.

• The LOGO turtle was one of the first
examples of a microworld, a simple,
s e l f - c o n t a i n e d p r o g r a m m i n g
environment designed for teaching.

• Papert described his experiences and
his theories about education in his
book Mindstorms, which remains one
of the most important books about
computer science pedagogy.

Programming the LOGO Turtle

to square

 repeat 4

 forward 40

 left 90

 end

end

to flower

 repeat 36

 square

 left 10

 end

end

The Logo Turtle in Python
% python3

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:10:52)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> from turtle import *

>>> import turtle

>>> def square():

...

KeyboardInterrupt

>>> def square(t):

... for i in range(4):

... t.forward(40)

... t.left(90)

...

>>> def flower(t):

... for i in range(36):

... square(t)

... t.left(10)

...

>>> flower(turtle.Turtle())

A Logo Sun in Python
% python3

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:10:52)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> from turtle import *

>>> def sun():

... color('red', 'yellow')

... begin_fill()

... while True:

... forward(200)

... left(170)

... if abs(pos()) < 1:

... break

... end_fill()

... done()

...

>>> sun()

Scratch
• Scratch is a high-level, "block" based programming language,

targeted at children to introduce them to programming.

• It was launched to the public in 2007

• It is a particularly unique
language because of its
block nature, but also
because it is event-driven
(e.g., mouse clicks, key
presses, timing, etc.
determine what happens)

• There are tens of millions of
Scratch projects, and Scratch
has been listed as one of the
top-20 most popular
languages

https://scratch.mit.edu/projects/editor/?tutorial=getStarted

Scratch
• Scratch does have its criticisms:

• Students who program in Scratch can end up with overly-
complicated programs because of the event-driven model.

• Students may have a hard
time translating from
Scratch to text-based
languages

• Students "age-out" of
scratch (i.e., "this is for
kids!") without getting deep
enough. Scratch is actually a
robust language that has
many interesting features,
but most students never see
those features.

Rich Pattis and Karel the Robot
• Karel the Robot was developed by

Rich Pattis in the 1970s when he was
a graduate student at Stanford.

• In 1981, Pattis published Karel the
Robot: A Gentle Introduction to the
Art of Programming, which became a
best-selling introductory text.

• Pattis chose the name Karel in honor
of the Czech playwright Karel Capek,
who introduced the word robot in his
1921 play R.U.R.

• In 2006, Pattis received the annual
award for Outstanding Contributions
to Computer Science Education given
by the ACM professional society.

ˇ
Rich Pattis

Bit
• Depending on who is teaching CS106A at Stanford, either

Karel or Bit might be used to introduce programming to
students. Karel has been used for many generations at Stanford
and other universities.

• Bit is a derivative of Karel (and looks very similar), created by
Stanford lecturer Nick Parlante for a revised version of
CS106A.

Meet Bit
• Bit lives in a grid world, and can move through the world one

square at a time (the dashed grid lines are not shown when
using Bit)

• Bit is currently facing to the right, and will move right if given
a move command.

Meet Bit
• Bit cannot move past the end of the grid (the outer walls), or

there is an error.

Meet Bit
• Bit cannot move past the end of the grid (the outer walls), or

there is an error.

• There might also be inner walls, which are black. Bit cannot

move through those walls, either.

Meet Bit
• There might also be inner walls, which are black. Bit cannot

move through those walls, either.

• Squares can be colored red, green, or blue, and Bit can move

over those just fine (i.e., they are not walls).

Meet Bit
• Bit starts out understanding a small number of action commands:

• bit.left() turn left

• bit.right() turn right

• bit.move() move in the direction Bit is facing

• bit.paint(color) paint the square 'red', 'green', or 'blue'

• bit.erase() clear the color under bit (back to white)

Your First Challenge
• How would you program Bit to erase the red square, and put a

red square "on top" of the "ledge" (the black wall), with Bit
ending up on the right side of the ledge, still facing right?

Your First Challenge
• How would you program Bit to erase the red square, and put a

red square "on top" of the "ledge" (the black wall), with Bit
ending up on the right side of the ledge, still facing right?

The moveRedSquareToLedge Function

// This program moves the red square up to a ledge.

function moveRedSquareToLedge(bit) {

 bit.move();

 bit.erase();

 bit.move();

 bit.left();

 bit.move();

 bit.right();

 bit.move();

 bit.paint('red');

 bit.move();

}

The moveRedSquareToEdge Function
Comment

// This program moves the red square up to a ledge.

function moveRedSquareToLedge(bit) {

 bit.move();

 bit.erase();

 bit.move();

 bit.left();

 bit.move();

 bit.right();

 bit.move();

 bit.paint('red');

 bit.move();

}

The moveRedSquareToEdge Function
Comment

The program function

// This program moves the red square up to a ledge.

function moveRedSquareToLedge(bit) {

 bit.move();

 bit.erase();

 bit.move();

 bit.left();

 bit.move();

 bit.right();

 bit.move();

 bit.paint('red');

 bit.move();

}

This program moves the red square up to a ledge.

def moveRedSquareToLedge(bit):

 bit.move()

 bit.erase()

 bit.move()

 bit.left()

 bit.move()

 bit.right()

 bit.move()

 bit.paint('red')

 bit.move()

Notice that the program on the prior slides is in Javascript
— for CS106A, which is taught in Python, Bit understands
Python:

The moveRedSquareToEdge Function

Defining New Functions
• A Bit program consists of a collection of functions, each of

which is a sequence of statements that has been collected
together and given a name. The pattern for defining a new
function looks like this:

function name() {

 statements that implement the desired operation

}

• In patterns of this sort, the boldfaced words are fixed parts of
the pattern; the italicized parts represent the parts you can
change. Thus, every helper function will include the keyword
function along with the parentheses and braces shown. You
get to choose the name and the sequence of statements
performs the desired operation.

Adding Functions to a Program
// This program moves the red squad up to a ledge.

// And then moves Bit back down again

function moveRedSquareToLedge(bit) {

 bit.move();

 bit.erase();

 bit.move();

 bit.left();

 bit.move();

 bit.right();

 bit.move();

 bit.paint('red');

 bit.move();

 turnAround(bit);

 moveBackDown(bit);

}

function turnAround(bit) {

 bit.right();

 bit.right();

}

function moveBackDown(bit) {

 bit.move();

 bit.move();

 bit.left();

 bit.move();

 bit.right();

 bit.move();

 bit.move();

 turnAround(bit);

}

Exercise: Defining Functions
• Define a function called turnAround that turns Bit around 180

degrees without moving.

• Define a function backup that moves Karel backward one
square, leaving Karel facing in the same direction.

function turnAround(bit) {

 bit.right();

 bit.right();

}

function backup(bit) {

 turnAround(bit);

 bit.move();

 turnAround(bit);

}

Control Statements
• In addition to allowing you to define new functions, Bit also

allows standard Javascript (or Python) control statements:

• The control statements available in Karel are:

– The while statement, which repeats a set of statements as long
as some condition holds.

– The if statement, which applies a conditional test to determine
whether a set of statements should be executed at all.

– The if-else statement, which uses a conditional test to choose
between two possible actions.

Conditions in Bit
• Bit can test the following conditions:

bit.front_clear()

bit.left_clear()

bit.right_clear()

bit.get_color()

• The first three conditions can be used to tell whether there is a
wall in front of, or to the left/right of Bit. These are useful to
continue walking in a direction until a wall appears, or a wall
begins or ends.

• The bit.get_color() function returns either 'red',
'green', 'blue', or null, depending on what color is at Bit's
position.

The while Statement
• The general form of the while statement looks like this:

• The simplest example of the while statement is the function
moveToWall, which comes in handy in lots of programs:

function moveToWall() {

 while (bit.front_clear()) {

 bit.move();

 }

}

while (condition) {

 statements to be repeated

}

The if and if-else Statements
• The if statement in Bit comes in two forms:

– A simple if statement for situations in which you may or may
not want to perform an action:

if (condition) {

 statements to be executed if the condition is true

}

if (condition) {

 statements to be executed if the condition is true

} else {

 statements to be executed if the condition is false

}

– An if-else statement for situations in which you must choose
between two different actions:

function test(bit) {

 colorLine(bit, 'blue');

 bit.left();

 colorLine(bit, 'green');

}

Exercise: Creating a Green Line
• Write a function colorLine(color) that colors each square

up to a wall in the direction Bit is traveling.

• Your function should operate correctly no matter how far Bit is

from the wall or what direction Bit is facing.

• Consider, for example, the following function called test:

function test(bit) {

 colorLine(bit, 'blue');

 bit.left();

 colorLine(bit, 'green');

}

function colorLine(bit, color)
{

 bit.paint(color);

 while (bit.front_clear()) {

 bit.move();

 bit.paint(color);

 }

}

Exercise: Creating a Green Line

Pascal

Pascal was invented by (future) Turing Award winner and former
Stanford professor, Niklaus Wirth in 1970 (a few years after he left
Stanford).

Wirth designed it to be a small language that encouraged good style, and
because of this it was used in many universities (including Stanford) in
the 1970s and 1980s (and eventually generally replaced by C).

program HelloWorld;

var

 i: integer;

 s: string;

begin

 i := 10;

 repeat

 str(i, s);

 Writeln('Hello world! ' + s);

 i := i - 1;

 until i = 0;

end.

https://onlinegdb.com/G_g_tcAHt

https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Niklaus_Wirth
https://onlinegdb.com/G_g_tcAHt

Pascal
Pascal had some interesting
features: notably:

• variable assignment used

":=" instead of "=",
allowing for a more
beginner-friendly syntax

• string lengths were part of
the string type (and strings
were not 0-terminated, but
rather had their length
embedded in the string).
This was a problem, and
necessitated changing the
language, eventually (e.g.,
this made it almost
impossible to write a sorting
library).

program ReverseString;

function revstr(my_s:string):string;

 var

 out_s: string;

 ls, i: integer;

 begin

 out_s := '';

 ls:=length(my_s);

 for i:=1 to ls do

 out_s:=out_s+my_s[ls-i+1];

 revstr:=out_s;

 end;

var

 original, reversed: string;

begin

 original := 'Hello World';

 reversed := revstr(original);

 Writeln('Original: ' + original);

 Writeln('Reversed: ' + reversed);

end.

https://onlinegdb.com/OCc9XJW57

https://onlinegdb.com/OCc9XJW57

Pascal
Pascal gained a huge following
in the mid-1980s when Turbo
Pascal by Borland was released.
It was inexpensive, and came
with a built-in Integrated
Development Environment
(IDE) that allowed programmers
an easy way to write programs
that compiled to machine code,
and that were extremely fast (see
the Wikipedia article for an
interesting anecdote about Bill
Gates).

Turbo Pascal also shipped on a
single 360KB floppy disk,
meaning it could be used on
virtually any 1980s vintage PC.

function factorial(n: integer): integer;

 begin

 if n = 0

 then

 factorial := 1

 else

 factorial := n*factorial(n-1)

 end;

 var

 number: integer;

 begin

 number := 15;

 Writeln(factorial(number));

 end.

https://onlinegdb.com/xVT592imt

https://en.wikipedia.org/wiki/Turbo_Pascal
https://en.wikipedia.org/wiki/Turbo_Pascal
https://en.wikipedia.org/wiki/Turbo_Pascal
https://onlinegdb.com/xVT592imt

BASIC

The BASIC language, created in 1964 by John G. Kemeny and
Thomas E. Kurtz at Dartmouth, was the programming language that
was included with home computers during the 1970s and 1980s.

The language was usually included in ROM, so that when the
computer booted up, users could immediately start programming.

BASIC
BASIC was designed
so that students in
non-scientific fields
could learn to
program.

Students learned
BASIC in school, or
by reading books that
had listing of
programs (often
games) that they could
type in relatively
quickly.

Family Computing Magazine, July 1985

BASIC
While BASIC was relatively easy to learn, and while it introduced
millions of kids to programming, it is not a particularly good language
(at least the 1980s version — today, Visual Basic is decent).

Famously, Edsgar Dijkstra said, in 1975, "It is practically impossible
to teach good programming to students that have had a prior exposure
to BASIC: as potential programmers they are mentally mutilated
beyond hope of regeneration."

Students who learned BASIC on their own do, indeed, have some
trouble graduating to a structured language such as C, Java,
Javascript, etc., but it is probably not as dire as Dijkstra led on.

The End

