Algorithms and Javascript

Chris Gregg, based on slides by Eric Roberts
CS 208E
October 1, 2021

A Quick Introduction to JavaScript

* It 1s impossible to learn about programming without writing
programs. In his book, Eric Roberts decided—after trying
several other possibilities—to use JavaScript as the
programming language.

* One of the advantages of JavaScript is that it 1s by far the most
common language for creating interactive content on the web.
That means that it will certainly stick around.

« Another advantage 1s that JavaScript can be simplified into a
language that 1s easy to learn and use without ever violating
the rules of the language. You simply banish the messy parts
of JavaScript and focus on the parts that are well designed.

Javascript and HTML

Although it 1s the "programming language that runs the World
Wide Web," Javascript 1s not the foundation of the Web -- that
would be the markup language, HTML.

Conceived in 1980 and implemented in 1991 by Sir Tim
Berners-Lee (Knighted by Queen Elizabeth 1in 2004, and 2016
Turning Award Winner), HTML can be used to interpret and
compose text, images, and other material for web pages.

It 1s the building block for web pages, and 1s based on "tags"
such as <p> (paragraph) and (image) which are
used to interpret the page.

We need a little bit of HTML to start writing in Javascript, but
it 1s a big standard with many interesting and subtle parts to it.

A Basic Web Page

We are going to put a web page onto your own
Stanford web space. Log into myth via ssh (see one of
the videos https://tinyurl.com/4pnuxpsj if you don't
know how to do that) and type the following:

S cd WWW
$ mkdir playground ; cd playground
S vim index.html

You can replace "vim" with "emacs" or "nano," if you
prefer a different editor. If you've never used a Unix
editor, use "nano". If a web server finds an index.html
file 1n a directory, it will load 1t as a web page.

https://www.youtube.com/playlist?list=PLkGAai-LjzyMjXUmqq4xy3eILdNlA-BVN

A Basic Web Page

Here 1s a basic web page:

<!DOCTYPE html>
<body onload="init()">

<hl>Welcome!</hl>

<p>Hello, Random Person!</p>

</body>

Save this page, and then go to the following web page,
with your name in the place of YourSUNet (don't
forget the tilde ~):

https://stanford.edu/~YourSUNet/playground/

https://stanford.edu/~YourSUNet/playground/

A Basie Boring Web Page
Here 1s a baste boring web page:

<!DOCTYPE html>
<body onload="init()">

<hl>Welcome!</hl>

<p>Hello, Random Person!</p>

</body>

Let's make 1t more interesting by adding Javascript.

Our First Bit of Javascript

<!DOCTYPE html>

<head>

<script>

function init() {
const name = window.prompt("What is your name?");
name span = document.getElementById("entered name");
name span.innerHTML = name;

}

</script>

</head>

<body onload="init()">
<hl>Welcome!</h1l>
<p>Hello, Random Person!</p>

</body>

Let's Write a Backend

So far, we've written frontend code that 1s entirely run in your
browser. I.e., your browser reads in the index.html file
(which includes some Javascript), and the browser controls
all the logic.

Most web pages also include a backend, which can store data
and run programs on the server where the web page 1s
located. The frontend makes a request to the backend
(possibly with some data), and a program is run on the
backend and returns data to the frontend.

You can request "CGI access" from Stanford for your web
space, and you can then put runnable files (Python, PERL,
PHP, compiled C, Bash, etc.) in the cgi-bin directory,
which sits alongside your Www directory.

https://uit.stanford.edu/service/cgi/personal

A simple backend program

Let's write our backend in Python. We need to first create the
appropriate directory in our cgi-bin directory, and copy
over a word list. Then we can create the python program:

mkdir ~/cgi-bin/playground

cd ~/cgi-bin/playground

cp /usr/share/dict/words .

vim ~/cgi-bin/playground/search-words.cgi

The server will only run files that end in . cgi

A simple backend program

Here 1s the program (you can copy/paste from here):
https://web.stanford.edu/~cgregg/playground/search-words.cgi

#!/usr/bin/env python

import os, cgi, cgitb, Jjson
cgitb.enable() # for debugging

DICT_FILE = "words"
print ("Content-type:application/javascript\n")

form = form = cgi.FieldStorage()

if form.has key("firstname") and form["firstname"].value != "":
firstname = form["firstname"].value.lower()
with open(DICT FILE) as f:
words = [x[:-1] for x in f.readlines() if x[0].islower()]

find the two words surrounding name
prev = ''

for idx, word in enumerate(words):
if word == firstname:
continue
if word > firstname:
if idx > 0:
print(json.dumps({'prev': prev, 'next': word}))
break
else:
print(json.dumps({'prev': '', 'next': word}))
break
prev = word

else:
print(json.dumps({'prev': '', 'next': ''}))

https://web.stanford.edu/~cgregg/playground/search-words.cgi
https://web.stanford.edu/~cgregg/playground/search-words.cgi

A simple backend program

Next, you need to make your python program executable.
Then, we'll change our html file:

chmod +x search-words.cgi
vim ../../WWW/playground/index.html

A simple backend program

Next, you need to make your python program executable.
Then, we'll change our html file (copy from here).
https://web.stanford.edu/~cgregg/playground/index.html.txt

<!DOCTYPE html>

<head>

<script>

function init() {
const name = window.prompt("What is your first name?");
name span = document.getElementById("entered name");
name_span.innerHTML = name;
search words (name) ;

}

function search words(name) {
fetch('../cgi-bin/playground/search-words.cgi?firstname=' + name)
.then(response => response.json())
.then(data => {
console.log(data)
prev_word = document.getElementById("prev_word");
next word = document.getElementById("next word");
prev_word.innerText = data.prev;
next word.innerText = data.next;
})i
}
</script>
</head>

<body onload="init()">

<hl>Welcome!</h1>

<p>Hello, Random Person!</p>

<p>Your name is preceded by ... in the dictionary, and

... comes after it.</p>

</body>

https://web.stanford.edu/~cgregg/playground/index.html.txt
https://web.stanford.edu/~cgregg/playground/index.html.txt

Expressions 1n JavaScript

As 1n most languages, computation in JavaScript is specified
in the form of an expression, which usually consists of terms
joined together by operators.

Each term must be one of the following:

— A constant (such as 3.14159265 or "hello, world")
— A variable name (such as n1, n2, or total)

— A function call that returns a value (such as sqrt)

— An expression enclosed in parentheses

You can test this in a browser directly by using the Developer mode:
In Google Chrome:
* View->Developer->Javascript Console.

In Apple Safari:

* (o to Safari->Preferences and then the advanced tab, and click "Show
Develop menu in the menu bar." Then, Develop->Show Javascript
Console.

Expressions 1n JavaScript

As 1n most languages, computation in JavaScript is specified
in the form of an expression, which usually consists of terms
joined together by operators.

Each term must be one of the following:

— A constant (such as 3.14159265 or "hello, world")
— A variable name (such as n1, n2, or total)

— A function call that returns a value (such as sqrt)

— An expression enclosed in parentheses

You can test this in a browser directly by using the Developer mode:
In Google Chrome:
* View->Developer->Javascript Console.

In Apple Safari:

* (o to Safari->Preferences and then the advanced tab, and click "Show
Develop menu in the menu bar." Then, Develop->Show Javascript
Console.

o090 < > O™ N U & ¥y B ~ & www.google.com & #0 M a
i savedv ACv RasPiv MRv Stanford v MyYahoo MUv Miatav SD Salon WorldClock VLSIv CSwv Physicsv Mathv pocket Tufts v >>

Google
Google Search I'm Feeling Lucky
x O M ¢ &/ D22 Go Ao | € | Q Seach |
>E
‘O\' Filter Console Log 14 >J| All Errors Warnings Logs |(:) | m

Console opened at 10:52:57 AM

> var name = "Chris"
¢ undefined

> console. log(name)
= Chris

¢ undefined

> | Main Frame

Variables

The simplest terms that appear in expressions are numeric
constants and variables. A variable 1s a placeholder for a value
that can be updated as the program runs.

A variable 1n JavaScript 1s most easily envisioned as a box
capable of storing a value.
answer

42

Each variable has the following attributes:
— A name, which enables you to tell different variables apart.
— A value, which represents the current contents of the variable.

The name of a variable 1s fixed. The value changes whenever
you assign a new value to the variable.

Variable Declarations

It 1s good practice to declare a variable before you use it. The
declaration sets the name of the variable and the initial value.

The general form of a variable declaration is

let name = value;

where name 1s the name of the variable and value i1s an
expression specifying the initial value.

Most declarations appear as statements in the body of a
function definition. Variables declared in this way are called
local variables and are accessible only 1nside that function.

Variables may also be declared outside of any function, in
which case they are global variables. The only global
variables used 1n the book are constants written 1n upper case.

Operators and Operands

Like most languages, JavaScript specifies computation using
arithmetic expressions that closely resemble expressions in
mathematics.

The most common operators in JavaScript are the ones that
specify arithmetic computation:
+ Addition * Multiplication
- Subtraction / Division
% Remainder

An operators usually appears between two subexpressions,
which are called its operands. Operators that take two
operands are called binary operators.

The - operator can also appear as a unary operator, as in the
expression -x, which denotes the negative of x.

The Remainder Operator

« The only arithmetic operator that has no direct mathematical
counterpart 1s %, which applies only to integer operands and
computes the remainder when the first divided by the second:

14 ¢ 5 returns 4
14 %
7 % 14 returns 7

7 returns 0

« The result of the $ operator make intuitive sense only 1f both
operands are positive. The examples in the book do not
depend on knowing how % works with negative numbers.

* The remainder operator turns out to be useful in a surprising
number of programming applications and turns up in several
of the algorithms in Chapter 2.

Statement Types 1n JavaScript

Statements in JavaScript fall into three basic types:
— Simple statements

— Compound statements

— Control statements

Simple statements are formed by adding a semicolon to the
end of an expression, which 1s typically an assignment or a
function call.

Compound statements (also called blocks) are sequences of
statements enclosed 1n curly braces.

Control statements fall into two categories:

— Conditional statements that specify some kind of test
— lIterative statements that specify repetition

Boolean Expressions

« JavaScript defines two types of operators that work with
Boolean data: relational operators and logical operators.

« There are six relational operators that compare values of other
types and produce a true/false result:

=== Equals == Not equals
< Less than <= Less than or equal to
> QGreater than >= Greater than or equal to

For example, the expression n <= 10 has the value true if n 1s
less than or equal to 10 and the value false otherwise.

» There are also three logical operators:

&& Logical AND p && gmeans both p and g
| | Logical OR p | | g means either p or g (or both)
! Logical NOT ! p means the opposite of p

Notes on the Boolean Operators

Remember that JavaScript uses = for assignment. To test
whether two values are equal, you must use the === operator.

It 1s not legal in JavaScript to use more than one relational
operator 1n a single comparison. To express the 1dea embodied
in the mathematical expression

0<x=<9
you need to make both comparisons explicit, as in

0 <=x &€& x <=9

The || operator means either or both, which 1s not always
clear in the English interpretation of or:

Be careful when you combine the ! operator with && and | |
because the interpretation often differs from informal English.

Short-Circuit Evaluation

« JavaScript evaluates the s&& and || operators using a strategy
called short-circuit mode in which it evaluates the right
operand only if it needs to do so.

» For example, if n 1s 0, the right operand of && 1n

n '==0 && x $ n ===

1s not evaluated at all because n '== 0 1s false. Because the
expression
false && anything

1s always false, the rest of the expression no longer matters.

* One of the advantages of short-circuit evaluation 1s that you
can use && and || to prevent execution errors. If n were 0 in
the earlier example, evaluating x $ n would cause a “division
by zero” error.

The if Statement

The simplest of the control statements 1s the if statement, which
occurs 1n two forms. You use the first form whenever you need to
perform an operation only 1f a particular condition i1s true:

if (condition) {
Statements to be executed if the condition is true

}

You use the second form whenever you want to choose between
two alternative paths, one for cases in which a condition 1s true
and a second for cases in which that condition 1s false:

if (condition) {

statements to be executed if the condition is true
} else {

statements to be executed if the condition is false

}

The while Statement

The while statement 1s the simplest of JavaScript’s iterative
control statements and has the following form:

while (condition) {
statements to be repeated

}

When JavaScript encounters a while statement, 1t begins by
evaluating the condition in parentheses.

If the value of condition 1s true, JavaScript executes the
statements in the body of the loop.

At the end of each cycle, JavaScript reevaluates condition to see
whether its value has changed. If condition evaluates to false,
JavaScript exits from the loop and continues with the statement
following the closing brace at the end of the while body.

The for Statement

The for statement in JavaScript 1s a particularly powerful tool for
specifying the control structure of a loop independently from the
operations the loop body performs. The syntax looks like this:

for (init ; test ; step) {
statements to be repeated

}

JavaScript evaluates a for statement as follows:

1. Evaluate init, which typically declares a control variable.
Evaluate fest and exit from the loop if the value 1s false.

Execute the statements in the body of the loop.
Evaluate step, which usually updates the control variable.
Return to step 2 to begin the next loop cycle.

AR R

Comparing for and while

The for statement

for (init ; test ; step) |
statements to be repeated

}

1s functionally equivalent to the following code using while:

init;

while (fest) {
statements to be repeated
step ;

}

The advantage of the for statement is that everything you need to
know to understand how many times the loop will run 1s explicitly
included 1n the header line.

Exercise: Reading £or Statements

Describe the effect of each of the following for statements:

1.

for (let 1 = 1; 1 <= 10; i++)

This statement executes the loop body ten times, with the control
variable i taking on each successive value between 1 and 10.

for (let i = 0; i < N; i++)

This statement executes the loop body N times, with i counting from
0 fo N-1. This version is the standard Repeat-N-Times idiom.

99; n > 1; n=n - 2)

for (let n

This statement counts backward from 99 to 1 by twos.

for (let x =1; x <= 1024; x = x * 2)

This statement executes the loop body with the variable x taking on
successive powers of two from I up to 1024.

Writing Functions

* The general form of a function definition 1s

function name (parameter list) {
Statements in the function body

}

where name 1s the name of the function, and parameter list 1s
a list of variables used to hold the values of each argument.

* You can return a value from a function by including a return
statement, which 1s usually written as

return expression;

where expression 1s an expression that specifies the value you
want to return.

Functions Involving Control Statements

 The body of a function can contain statements of any type,
including control statements. As an example, the following
function uses an if statement to find the larger of two values:

function max(x, y) {
if (x > y) {
return x;
} else {
return y;

}
}

» As this example makes clear, return statements can be used
at any point in the function and may appear more than once.

The factorial Function

The factorial of a number n (which is usually written as n! in
mathematics) 1s defined to be the product of the integers from
1 up to n. Thus, 5! is equal to 120, which 1s 1x2x3x4x35.

The following function definition uses a £for loop to compute
the factorial function:

function fact(n) {
let result = 1;
for (var i = 1; 1 <= n; i++) {
result = result * ji;

}

return result;

Functions and Algorithms

* Functions are critical to programming because they provide a
structure 1n which to express algorithms.

* Algorithms for solving a particular problem can vary widely in
their efficiency. It makes sense to think carefully when you
are choosing an algorithm because making a bad choice can be
extremely costly.

 The next few slides illustrate this principle by implementing
two algorithms for computing the greatest common divisor of
the integers x and), which 1s defined to be the largest integer
that divides evenly into both.

The Brute-Force Approach

* One strategy for computing the greatest common divisor is to
count backwards from the smaller value until you find one that
divides evenly into both. The code looks like this:

function gecd(x, y) {
let guess = x;
while (x % guess '== 0 || y % guess '== 0) {
guess-—-;
}

return guess;

}

e This algorithm must terminate for positive values of x and y
because the value of guess will eventually reach 1. At that
point, guess must be the greatest common divisor.

* Trying every possibility 1s called a brute-force strategy.

Euclid’s Algorithm

e If you use the brute-force approach to compute the greatest
common divisor of 1000005 and 1000000, the program will
take a million steps to tell you the answer 1s 5.

* You can get the answer much more quickly 1f you use a better
algorithm. The Greek mathematician Euclid of Alexandria
described a more efficient algorithm 23 centuries ago, which

looks like this:

function gecd(x, y) {

while (x $ y !'== 0) {
let r = x % y;
X =Y,
y = &,

}

return y;

}

How Euclid’s Algorithm Works

e If you use Euclid’s algorithm on 1000005 and 1000000, you
get the correct answer 1n just two steps, which 1s much better
than the million steps required by brute force.

* Euclid’s great insight was that the greatest common divisor of
x and y must also be the greatest common divisor of y and the
remainder of x divided by y. He was, moreover, able to prove
this proposition in Book VII of his Elements.

e It is easy to see how Euclid’s algorithm works if you think
about the problem geometrically, as Euclid did. The next slide

works through the steps in the calculation when x 1s 78 and y
1s 33.

An Illustration of Euchid’s Algorithm

Step 1: Compute the remainder of 78 divided by 33:
S I/

h% 33 33 12

Step 2: Compute the remainder of 33 divided by 12:
X 33

y 12 12 9

Step 3: Compute the remainder of 12 divided by 9:
X 12

yI| 9 |3

Step 4: Compute the remainder of 9 divided by 3:
X | 9

Y [313]3 Because there 1s no remainder, the answer 1s 3:

Aside: Callback Functions 1n Javascript

* As Javascript was designed for the web, it was built with the
ability to have asynchronous behavior, primarily so that the
web page interface would always be response. For example,
let's say you had a triply-nested loop that was printing to the
web page:

function stop() {
count.stop = true; // triggered by button press

}

function count() {
count.stop = false;
const iterations = 100;
const counter = document.getElementById("counter") ;
counter.innerHTML = ""

for (let i=0; i < iterations; i++) {
for (let j=0; j < iterations; j++) {
for (let k=0; k < iterations; k++) {
counter.innerHTML =i + "," + jJ + "," + k;
if (count.stop) {
return;

}

Aside: Callback Functions 1n Javascript

 The problem with this code 1s that the browser becomes
completely unresponsive, which is not good for the user!

function stop() {
count.stop = true; // triggered by button press

}

function count() {
count.stop = false;
const iterations = 100;
const counter = document.getElementById("counter") ;
counter.innerHTML = ""

for (let i=0; i < iterations; i++) {
for (let j=0; j < iterations; j++) {
for (let k=0; k < iterations; k++) {
counter.innerHTML =i + "," + jJ + "," + k;
if (count.stop) {
return;

}

Aside: Callback Functions 1n Javascript

« What we can do is to re-write the function so that things
happen asynchronously, meaning that your function shares
control with the graphical engine, and the website remains
responsive:

function count() {
count.stop = false;
const iterations = 100;
const counter = document.getElementById("counter") ;
counter.innerHTML = "";
let i =0, j=0, k =0;
const loopFunc = setlInterval (function() {
if (count.stop) ({
clearInterval (loopFunc) ;

return;
}
counter.innerHTML =i + "," + 3 + "," + k;
k++;
if (k == iterations) {
J++;
k =0;
}
if (j == iterations) {
i++;
3=0;
}
if (i == iterations) {

clearInterval (loopFunc) ;
}
}, 0.1);
}

Aside: Callback Functions 1n Javascript

e This utilizes an interval timer to call the inner function
(defined "anonymously") every 0.1 seconds. The web browser
remains responsive, and the screen updates regularly:

function count() {
count.stop = false;
const iterations = 100;
const counter = document.getElementById("counter") ;
counter.innerHTML = "";
let i =0, j=0, k =0;
const loopFunc = setlInterval (function() {
if (count.stop) ({
clearInterval (loopFunc) ;

return;
}
counter.innerHTML =i + "," + 3 + "," + k;
k++;
if (k == iterations) {
J++;
k =0;
}
if (j == iterations) {
i++;
3=0;
}
if (i == iterations) {

clearInterval (loopFunc) ;
}
}, 0.1);
}

Important Algorithms in Computing

* [f you asked one hundred mathematicians and computer
scientists what the most important algorithms are in
computing, you would get one hundred different answers.

« However, there are some standout algorithms that you should
know about, and some which you should go and program
yourself. We will talk about a few now.

https://medium.com/(@_marcos otero/the-real-10-algorithms-
that-dominate-our-world-e95fa9f16c04

http://www.koutschan.de/misc/algorithms.php

https://www.businessinsider.com/the-5-most-important-
algorithms-in-tech-2013-10

https://en.wikipedia.org/wiki/List of algorithms
https://en.wikipedia.org/wiki/Timeline of algorithms

https://cs.uwaterloo.ca/~shallit/Courses/134/history.html

https://medium.com/@_marcos_otero/the-real-10-algorithms-that-dominate-our-world-e95fa9f16c04
https://medium.com/@_marcos_otero/the-real-10-algorithms-that-dominate-our-world-e95fa9f16c04
http://www.koutschan.de/misc/algorithms.php
https://www.businessinsider.com/the-5-most-important-algorithms-in-tech-2013-10
https://www.businessinsider.com/the-5-most-important-algorithms-in-tech-2013-10
https://en.wikipedia.org/wiki/List_of_algorithms
https://en.wikipedia.org/wiki/Timeline_of_algorithms
https://cs.uwaterloo.ca/~shallit/Courses/134/history.html

Sorting Algorithms

« Sorting 1s a critical task that computers can do, and it has been
well studied and mvestigated.

* Sorting speed 1s fundamentally limited to have a
computational complexity of O(n log n), which basically
means that in the worst case, a sorting algorithm must traverse
all of the numbers that you are sorting a logarithmic amount of
times. For example: if you have 16 integers you want to sort,
the algorithm will evaluate and compare each of those 16
integers log>16, or four times, for a total of 16 * 4 = 64
comparisons. If you have one million integers, you will
compare 1M * log>(1M) = 20 million comparisons.

« There are many cool online visualizations for sorting:

https://www.youtube.com/watch?v=kPRAOWI1KECg
https://www.toptal.com/developers/sorting-algorithms
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.toptal.com/developers/sorting-algorithms
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

The Fast Fourier Transform

iSignal 5 Frequency Spectrum Mode (Press Shift-S again to cancel)
T

» The Fourier Transform is a function T | -
that takes a function of time and] :
breaks it into the frequencies that \ |

L]
m I(1t 0 10 2 Y 0 @
a o o Pressshif - to cycle through spectrum log/linear plot modes
o = -

* For example, a perfect sine wave has] | |
a single frequency, and therefore the i /
Fourier Transform of the wave would - /\
be a single value at the frequency of °
the wave:

* The Discrete Fourier Transform 1s not trivial to calculate, but
in 1965 James Cooley and John Tukey published the Fast
Fourier Transform (FFT), which revolutionized digital signal
processing, and the FFT is used all over the place.

* For example: The Shazam application for determining what
song 1s playing 1s based on the FFT (and on hashing): http://
coding-geek.com/how-shazam-works/

http://coding-geek.com/how-shazam-works/
http://coding-geek.com/how-shazam-works/
http://coding-geek.com/how-shazam-works/
http://coding-geek.com/how-shazam-works/

RSA and Public/Private Key Cryptography

 When you complete an online purchase, or when you go to a
secure website, part of the process uses public-key
cryptography to do the job. We will discuss cryptography later
in the course, but the RSA algorithm is fundamental to
efficient secure communications, as used on the Internet.

 http://logos.cs.uic.edu/340%20Notes/rsa.html
 https://www.youtube.com/watch?v=b57zGAkNKIc

http://logos.cs.uic.edu/340%20Notes/rsa.html
https://www.youtube.com/watch?v=b57zGAkNKIc

Data Compression Algorithms

« If you’ve ever seen an image on the Internet, or ever listened
to an .mp3, or ever watched Netflix, you’ve benefited from
data compression.

« Compression can be either lossless or lossy — a lossless
compression algorithm (such as the .zip file format, or the .png
format, or Huffman encoding, which you may have practiced
in CS 106B), allows exact decompression. A lossy
compression algorithm (e.g., .Jpg, or .mp3, or Netflix movies)
removes some data, but in a way that 1s (hopefully)
imperceptible to the viewer, or listener (for example).

* An .mp3 1s lossy, in that frequencies that you cannot hear from
the original are removed to save space. There has been great
debate over whether audiophiles can perceive the difference
between a raw audio file with all the data and .mp3 files.

Pseudo-random Number Generation

2332068758
2598492054
65350029119
3159??9295
; ' £

L
ey ra
S Y d RN
= =] h
=] LN
2 2 LW

s
'
b
1
- !]
31?4?6?6321D5
6594996210854
0337950001087
£950393344051
4309358504451 3
6495357980054
2169572258851 4
3240003030954
6621 3354283785!
?21251625934615?6
3404274301 0035366404
B237052342930552204

3
1
3
=]
1
=
=
7
1
=
1
=
=X

POROONWUAUAY AU

OO0 A WO

Ll L ENEN Pl D]] DEN P TR |

Q= S0 O =] = S =] O T Ch A O O

MM O=]NO N SO -] r

QUEAN LSOO
QMO -]WA=]W0
SO
n)]

NOMA-]0=]MOR -
=] Lo L4 2 100 LN O =] = O

It 1s impossible to programmatically generate random
numbers, yet we need to use random numbers 1n many
applications, such as cryptography, hashing, video games, Al,
finance modeling, etc.

There are ways to collect random data to produce truly random
numbers, but it 1s slow and not easy to do. Often, we can get
away with producing pseudo-random numbers algorithmically
in such a way that 1t 1s extremely difficult to tell that the data
1s not truly random.

The End

