
Stored Program Machines

Chris Gregg, Based on slides by Eric Roberts

CS 208E

October 11, 2021

Control panel for the Manchester Baby

The von Neumann Architecture
• One of the foundational ideas of

modern computing—traditionally
attributed to John von Neumann
although others can make valid
claims to the idea—is that code is
stored in the same memory as data.
This concept is called the stored
programming model.

• The next few slides introduce the
Manchester Baby, which was the
first stored-program computer. In
the rest of today’s class, we will
describe the operation of a slightly
more powerful machine that Eric
Roberts nicknamed "Toddler".

John von Neumann and J. Robert Oppenheimer

A figure from the First Draft of a Report on the
EDVAC

The von Neumann Architecture
• Links:

• First Draft of a Report on the
EDVAC:

• https://en.wikipedia.org/

wiki/
First_Draft_of_a_Report_o
n_the_EDVAC

• Von Neumann Architecture -
Computerphile:

• https://www.youtube.com/

watch?v=Ml3-kVYLNr8

https://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC
https://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC
https://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC
https://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC
https://www.youtube.com/watch?v=Ml3-kVYLNr8
https://www.youtube.com/watch?v=Ml3-kVYLNr8

The Manchester Baby

Structure of the Toddler Machine

000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x

0
1
2
3
4
5
6
7
8
9

000+
AC

00
PC IR

000+

Console

The Toddler Instruction Set

1xx LOAD xx Loads the value from address xx into the AC
2xx STORE xx Stores the value from AC into address xx
3xx ADD xx Adds the value at address xx to the AC
4xx SUB xx Subtracts the value at address xx from AC

8xx INPUT xx Reads a value into address xx
9xx OUTPUT xx Prints the value in address xx

500 HALT Halts the machine

The Add-Two-Numbers Program

+850 INPUT 50(01)
+851 INPUT 51(02)
+150 LOAD 50(03)
+351 ADD 51(04)
+252 STORE 52(05)
+952 OUTPUT 52(06)
+500 HALT(07)

The Instruction Cycle
1. Fetch the current instruction. In this phase, Toddler finds

the word from the memory address specified by the PC
and copies its value into the IR.

2. Increment the program counter. Once the current
instruction has been copied into the IR, Toddler adds one
to the PC so that it points to the next instruction.

3. Decode the instruction in the instruction register. The
value copied into the IR is a three-digit integer. To use it
as an instruction, Toddler must divide the instruction
word into its opcode and address components.

4. Execute the instruction. Once the operation code and
address field have been identified, the Toddler processor
must carry out the steps necessary to perform the
indicated action.

The Add-Two-Numbers Program

058+
158+
051+
153+
252+
259+
005+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

000+
000+
000+
000+
000+
000+
000+
000+
000+
000+

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x

0
1
2
3
4
5
6
7
8
9

000+
AC

00
PC IR

000+10 30 40 50 70

710+

520+
240+

058+ INPUT 50

Console

20

 ? 17

710+

158+ INPUT 51

 ? 25

LOAD 50051+ 153+ ADD 51

240+

252+ STORE 5260 80 259+ OUTPUT 52

42

HALT005+

The Toddler Instruction Set

1xx LOAD xx Loads the value from address xx into the AC
2xx STORE xx Stores the value from AC into address xx
3xx ADD xx Adds the value at address xx to the AC
4xx SUB xx Subtracts the value at address xx from AC

8xx INPUT xx Reads a value into address xx
9xx OUTPUT xx Prints the value in address xx

500 HALT Halts the machine
5xx JUMP xx Takes the next instruction from address xx
6xx JUMPZ xx Jumps to xx if the AC is zero
7xx JUMPN xx Jumps to xx if the AC is negative

The Countdown Program

+111 start: LOAD ten(01)
+212 STORE i(02)
+709 loop: JUMPN done(03)
+912 OUTPUT i(04)
+112 LOAD i(05)
+410 SUB one(06)
+212 STORE i(07)
+503 JUMP loop(08)
+500 done: HALT(09)
+001 one: 1(10)
+010 ten: 10(11)
+000 i: 0(12)

assembly language

Representing Constants
• Just as was true for the Analytical Engine, constants in the

Toddler machine need to be stored in one of the memory
addresses, as illustrated by the following lines from the
assembly language version of Countdown.td:

one: 1
ten: 10

• The instruction LOAD ten then refers to a memory address that
contains the value 10.

LOAD #10

• Toddler also allows you to write

which finds space for the constant 10 at the end of the
program and then fills in the LOAD instruction with the address
of that constant.

Exercise: Multiply Two Numbers
• How would you write a Toddler program to multiply two

nonnegative numbers, even though the machine has no
multiply instruction?

Console
 ?
 ?
42
 7
 6

The End

