Extending Toddler

-1xx LOADX xx Loads the value from address xx into XR
—-2XX STOREX xx Stores the value from XR into address xx
-3xx LOAD xx (XR) Loads AC with the contents of xx + XR

-4 xx STORE xx (XR) Stores AC into address xx + XR

-500 RETURN Returns from a function

-5xx CALL xx Call the function at address xx

- 6xX PUSH xx Push the contents of xx on the stack

-7 xx POP xx Pops the top element on the stack into xx
-8xx INCHAR xx Reads a character code into address xx

- 9xx OUTCHAR xx Prints the character code in address xx
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The Concept of a Stack

* A stack is a data structure in which the
clements are accessible only in a last-
in/first-out order. The operations on a h @ 4
stack are push, which adds a value to
the top of the stack, and pop, which
removes and returns the top value.

* One of the most common metaphors
for the stack concept is a spring-loaded
storage tray for dishes. Adding a new
dish to the stack pushes any previous
dishes downward. Taking the top dish
away allows the dishes to pop back up.

« Stacks are important in von Neumann
machines because function calls obey a
last-in/first-out discipline.



The Toddler System Stack

Like all modern hardware, the Toddler machine implements a
stack mn hardware to simplify dividing programs up into
independent functions.

The Toddler stack lives at the highest addresses 1n memory, so
the bottom of a stack 1s at address 99, and the stack grows
toward lower memory addresses.

The address of the element at the top of the stack 1s stored in
the register SP. If the SP 1s 00, that means the stack 1s empty.

Pushing a value on the stack corresponds to subtracting one
from the SP and then storing a value in the resulting address.

Popping the top value from the stack reverses the process by
taking the current contents of the word addressed by SP and
then adding one to SP.



Functions and Stacks

e The carL instruction pushes the current value of the PC
(which has already been incremented to refer to the next
instruction) on the stack. This value 1s called the return
address.

 The RETURN 1nstruction pops the top value on the stack into
the PC, which has the effect of returning to the point just after
the CALL 1nstruction.



The Extended Instruction Set

-1xx LOADX xx Loads the value from address xx into XR
-2XX STOREX xx Stores the value from XR into address xx
-3xx LOAD xx (XR) Loads AC with the contents of xx + XR
—-4xx STORE xx (XR) Stores AC into address xx + XR

-500 RETURN Returns from a function

-5xx CALL xx Call the function at address xx

- 6xX PUSH xx Push the contents of xx on the stack

-7 xx POP xx Pops the top element on the stack into xx
-8xx INCHAR Xxx Reads a character code into address xx
-9xx OUTCHAR xx Prints the character code in address xx




Exercise: Multiply as a Function

 Rewrite the Multiply.td program so that 1t defines a
function called mult that takes values in the variables n1 and
n2 and returns its answer 1n a variable called result.

 Use that function to write a program called Factorial.td
that computes the factorial of an integer. The largest factorial
that fits in three digits 1s 6!, so a sample run might look like
this:

‘006 Console
? 6
720




The Extended Instruction Set

-1xx LOADX xx Loads the value from address xx into XR
-2XX STOREX xx Stores the value from XR into address xx
-3xx LOAD xx (XR) Loads AC with the contents of xx + XR
—-4xx STORE xx (XR) Stores AC into address xx + XR

-500 RETURN Returns from a function

-5xx CALL xx Call the function at address xx

- 6xX PUSH xx Push the contents of xx on the stack

-7 xx POP xx Pops the top element on the stack into xx
-8xx INCHAR Xxx Reads a character code into address xx

- Oxx OUTCHAR xx Prints the character code in address xx




Class Example: Hello, World

 The INCHAR and OUTCHAR instructions are similar to INPUT
and ouTpPUT except that they read and write the numeric
representation of a single character.

* The rest of this lecture develops three implementations of a
program that prints the string “hello, world” on the console.

006 Console
hello, world




Hello World: The Brute Force Version

/*
* File: HelloWorldl.td

* Writes out "hello, world" character by character.

*/
start: OUTCHAR #104 /* The code for the character 'h' */
OUTCHAR #101 /* 'e' */
OUTCHAR #108 /* '1' */
OUTCHAR #108 /* '1' */
OUTCHAR #111 /* 'o' */
OUTCHAR #44 Jx v, %)
OUTCHAR #32 /* ' ' ox/
OUTCHAR #119 /* 'w' */
OUTCHAR #111 /* 'o' */
OUTCHAR #114 /* 'r' */
OUTCHAR #108 /* '1' %/
OUTCHAR #100 /* 'd' */
OUTCHAR #10 /* The newline character ('\n') */

HALT




Self-Modifying Code

* One of the defining features of the von Neumann architecture
1s that instructions and data are stored in the same memory.
That fact makes 1t possible for programs to modify their own
instructions by treating them just like any other numeric data.

 The HelloWorld2.td program uses this technique to create
an instruction that prints a character from the address that 1s
the start of the string "hello, world" plus the value of the
index i. It then stores that instruction in the program and
executes it.

* Programs that change their own instructions are said to be
self-modifying. In early machines, this strategy was often the
only way to accomplish certain operations. Today, 1t 1s
generally seen as a dangerous programming practice.



Hello World: Self-Modifying Code

/*
* File: HelloWorld2.td

* Writes out "hello, world" using self-modifying code.

*/
start: LOAD #msg /* Load the address of the string */
CALL strout /* Call the function to output a string */
HALT /* And halt */
strout: STORE addr /* Store current address */
LOAD ldins /* Load a word with a LOAD 0 instruction */
ADD addr /* Add the address offset */
STORE patch /* Store the LOAD in the next word */
patch: 0 /* This will get filled in */
JUMPZ ret /* A zero character marks the end */
STORE ch /* Store the character */
OUTCHAR ch /* Write it out */
LOAD addr /* Get the current address */
ADD #1 /* Move to the next one */
JUMP strout /* And go back for more */
ret: RETURN /* Return from the strout function */
msg: "hello, world"
ldins: LOAD O
addr: 0

ch: 0




The Ugliest Program I Ever Wrote
Guy Steele



https://www.infoq.com/presentations/Thinking-Parallel-Programming/
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How the Morris Worm Worked

If the user, however, enters a name
string that overflows the buffer, the
bytes in that name will overwrite the
data on the stack.

Now when the function returns, it
will jump 1nto the code written as
part of the name, thereby executing
the worm'’s instructions.

new code

stack




The Extended Instruction Set

-1xx LOADX xx Loads the value from address xx into XR
-2XX STOREX xx Stores the value from XR into address xx
-3xx LOAD xx (XR) Loads AC with the contents of xx + XR
—-4xx STORE xx (XR) Stores AC into address xx + XR

-500 RETURN Returns from a function

-5xx CALL xx Call the function at address xx

- 6xX PUSH xx Push the contents of xx on the stack

-7 xx POP xx Pops the top element on the stack into xx
-8xx INCHAR Xxx Reads a character code into address xx
-9xx OUTCHAR xx Prints the character code in address xx




Index Registers

* The HelloWorld3.td program avoids the self-modifying
strategy by using the Toddler machine’s index register (XR),
which automatically adds the contents of the index register to
the address given 1n a LOAD or STORE Instruction.

« The roapx and STOREX Instructions load and store the
contents of the XR itself. Supplying the (XR) suffix on a
LOAD Or STORE Instruction changes what memory address 1s
referenced.



Hello World: Using the Index Register

/*
* File: HelloWorld3.td

* Writes out "hello, world" using the index register.

*/

start: LOAD {#msg /* Load the address of the string */
CALL strout /* Call the function to output a string */
HALT /* And halt */

strout: STORE addr /* Store current address */
LOADX addr /* Load that address into the XR */
LOADX 0 (XR) /* Load the value at that address */
JUMPZ ret /* A zero character marks the end */
STORE ch /* Store the character */
OUTCHAR ch /* Write it out */
LOAD addr /* Get the current address */
ADD #1 /* Move to the next one */
JUMP strout /* And go back for more */

ret: RETURN /* Return from the strout function */

msqg: "hello, world"

addr: 0

ch: 0




The End



