Extending Toddler

-1xx LOADX xx Loads the value from address xx into XR
—-2XX STOREX xx Stores the value from XR into address xx
-3xx LOAD xx (XR) Loads AC with the contents of xx + XR

-4 xx STORE xx (XR) Stores AC into address xx + XR

-500 RETURN Returns from a function

-5xx CALL xx Call the function at address xx

- 6xX PUSH xx Push the contents of xx on the stack

-7 xx POP xx Pops the top element on the stack into xx
-8xx INCHAR xx Reads a character code into address xx

- 9xx OUTCHAR xx Prints the character code in address xx

Chris Gregg, based on slides by Eric Roberts
CS 208E
October 15, 2021



The Concept of a Stack

* A stack is a data structure in which the
clements are accessible only in a last-
in/first-out order. The operations on a h @ 4
stack are push, which adds a value to
the top of the stack, and pop, which
removes and returns the top value.

* One of the most common metaphors
for the stack concept is a spring-loaded
storage tray for dishes. Adding a new
dish to the stack pushes any previous
dishes downward. Taking the top dish
away allows the dishes to pop back up.

« Stacks are important in von Neumann
machines because function calls obey a
last-in/first-out discipline.



The Toddler System Stack

Like all modern hardware, the Toddler machine implements a
stack mn hardware to simplify dividing programs up into
independent functions.

The Toddler stack lives at the highest addresses 1n memory, so
the bottom of a stack 1s at address 99, and the stack grows
toward lower memory addresses.

The address of the element at the top of the stack 1s stored in
the register SP. If the SP 1s 00, that means the stack 1s empty.

Pushing a value on the stack corresponds to subtracting one
from the SP and then storing a value in the resulting address.

Popping the top value from the stack reverses the process by
taking the current contents of the word addressed by SP and
then adding one to SP.



Functions and Stacks

e The carL instruction pushes the current value of the PC
(which has already been incremented to refer to the next
instruction) on the stack. This value 1s called the return
address.

 The RETURN 1nstruction pops the top value on the stack into
the PC, which has the effect of returning to the point just after
the CALL 1nstruction.



The Extended Instruction Set

-1xx LOADX xx Loads the value from address xx into XR
-2XX STOREX xx Stores the value from XR into address xx
-3xx LOAD xx (XR) Loads AC with the contents of xx + XR
—-4xx STORE xx (XR) Stores AC into address xx + XR

-500 RETURN Returns from a function

-5xx CALL xx Call the function at address xx

- 6xX PUSH xx Push the contents of xx on the stack

-7 xx POP xx Pops the top element on the stack into xx
-8xx INCHAR Xxx Reads a character code into address xx
-9xx OUTCHAR xx Prints the character code in address xx




Exercise: Multiply as a Function

 Rewrite the Multiply.td program so that 1t defines a
function called mult that takes values in the variables n1 and
n2 and returns its answer 1n a variable called result.

 Use that function to write a program called Factorial.td
that computes the factorial of an integer. The largest factorial
that fits in three digits 1s 6!, so a sample run might look like
this:

‘006 Console
? 6
720




The Extended Instruction Set

-1xx LOADX xx Loads the value from address xx into XR
-2XX STOREX xx Stores the value from XR into address xx
-3xx LOAD xx (XR) Loads AC with the contents of xx + XR
—-4xx STORE xx (XR) Stores AC into address xx + XR

-500 RETURN Returns from a function

-5xx CALL xx Call the function at address xx

- 6xX PUSH xx Push the contents of xx on the stack

-7 xx POP xx Pops the top element on the stack into xx
-8xx INCHAR Xxx Reads a character code into address xx

- Oxx OUTCHAR xx Prints the character code in address xx




Class Example: Hello, World

 The INCHAR and OUTCHAR instructions are similar to INPUT
and ouTpPUT except that they read and write the numeric
representation of a single character.

* The rest of this lecture develops three implementations of a
program that prints the string “hello, world” on the console.

006 Console
hello, world




Hello World: The Brute Force Version

/*
* File: HelloWorldl.td

* Writes out "hello, world" character by character.

*/
start: OUTCHAR #104 /* The code for the character 'h' */
OUTCHAR #101 /* 'e' */
OUTCHAR #108 /* '1' */
OUTCHAR #108 /* '1' */
OUTCHAR #111 /* 'o' */
OUTCHAR #44 Jx v, %)
OUTCHAR #32 /* ' ' ox/
OUTCHAR #119 /* 'w' */
OUTCHAR #111 /* 'o' */
OUTCHAR #114 /* 'r' */
OUTCHAR #108 /* '1' %/
OUTCHAR #100 /* 'd' */
OUTCHAR #10 /* The newline character ('\n') */

HALT




Self-Modifying Code

* One of the defining features of the von Neumann architecture
1s that instructions and data are stored in the same memory.
That fact makes 1t possible for programs to modify their own
instructions by treating them just like any other numeric data.

 The HelloWorld2.td program uses this technique to create
an instruction that prints a character from the address that 1s
the start of the string "hello, world" plus the value of the
index i. It then stores that instruction in the program and
executes it.

* Programs that change their own instructions are said to be
self-modifying. In early machines, this strategy was often the
only way to accomplish certain operations. Today, 1t 1s
generally seen as a dangerous programming practice.



Hello World: Self-Modifying Code

/*
* File: HelloWorld2.td

* Writes out "hello, world" using self-modifying code.

*/
start: LOAD #msg /* Load the address of the string */
CALL strout /* Call the function to output a string */
HALT /* And halt */
strout: STORE addr /* Store current address */
LOAD ldins /* Load a word with a LOAD 0 instruction */
ADD addr /* Add the address offset */
STORE patch /* Store the LOAD in the next word */
patch: 0 /* This will get filled in */
JUMPZ ret /* A zero character marks the end */
STORE ch /* Store the character */
OUTCHAR ch /* Write it out */
LOAD addr /* Get the current address */
ADD #1 /* Move to the next one */
JUMP strout /* And go back for more */
ret: RETURN /* Return from the strout function */
msg: "hello, world"
ldins: LOAD O
addr: 0

ch: 0




The Ugliest Program I Ever Wrote
Guy Steele



https://www.infoq.com/presentations/Thinking-Parallel-Programming/

The Internet Worm

“All the News
That’s Fit to Print" ~

¢ Neww Hork Cime

. Lats Editon
""YC&T“MWSM
Hygh 5004 Tonight, mordy claady.
Low 4834, Tomerrow. cloody, windy
ee oa
T S Yoy

VOLCXXXVIIL ... NO 47477 Copyrah €150 S tew Vork T "~

NEW YORK, FRIDAY, NOVEMBER 4, 1383

4oy S 15 et S S Tk S it ot L Ml

,JscaN"rsl

@ 10 yearobd 1am 31 3 1oum mseng I

Pa. Mpwdm»amm-ﬁnhn
phagined the drug prablecs. Pale Vice Sres.

There i boes & presessced
dociine in the peroertage of ¢f)-
Able Arvericrs who o regie-
sered 13 voee, 3 ressarch grocp
repans.

Natumally, (e percestape of
clipgble Amerxam wiw wre
regbiennd b @tinsied o be
T3 -parcecw, dawz 11 polna
feam B 15854 el -

Tha prawp'c vy canladed
thar 0 masy of Be X sens
whwre Ml [gures are asal

ehic Lhe dechoe was among

Gov. Michael 8. Dukaicis having his picsare caicen by
Pairer 1,

T T A .

mamwm-m’hcﬂm
. Daikeakis

e Oftic. Lees =han 3 week afier Mr.
kzowledged being 2 iberal, M. lt:.hnﬂ

thixt *thiz dlectizn fs not abowt Ladels” Fxpe A TS,

Fr 3

>
'

“Virus’ in Military Computers

Disrupts Systems Nattonwzde-

By JOHN MARKOFF

Uass sboa! (e Wiveradiky =f
the sation’s compuicrs, & Dépegie
Deferse setwock ban

" tivelychsing spems kg

Uossands of mlizary, cornpocule
ared LEversity corspelers sroued
the ratin ead prevesting Sem
fram dolag sctiand wark. The
wvirus bx Dot not 10 have -
sropwe any e

By bae peaerday afersen
Oripeler eajerts wore calleg
Lhe wires e bargest ok ever
o= (be pation’s compaters.

The Rig lesw”

SThe Lig st b Ol & reda-
Usely oregn sallware progran
O8N W Taaly Brisg cor camzpating
coemranity 2 its kases a2d keap
N Lers for mme time™ wald
Chack Cole, Cepaty Oonpeter s
corky manaper M Lawvesce
Livermare Ladoratery o Liver.
more, Call, coe of (be sibex 2l
focted by (be totrusion. 'm coex

Chfford Sl a covpaser o
curity axpert 31 Harvard Univer
sy, added: “There bs e oo 345
N aseger who 13 sl lcarxyg
By ba¥ cel 12 cunisg escr-
m3us haadhckas”

The alfected corepetors carTY 2
creceendous wariety of dusieess
and research nlorration arseng

23 carporstioon.
W same seastihy midtary
daia are levaived, the compuers

PENTAGON REPORTS
INPROPER CHARGES *
FOR CONSULTANTS

CONTRACTORS CRITICIZED

A T e e,

Inquiry Shows Routine Billing
of Government by Industry =

on Foes, Some Debious
JOMN H. CUSHMAN J v
pumer warkd the dehavier of ble- o
Jegical viuses. A varus i3 8 pes- et — -l
ram, or &t of s VA TON, Nov. 3 — A Peels-
corsputer, A L ekder plurced »2 frveatipatos bas fourd Ut (e ra-
o= 3 Soppy Al mvears 13 be g Son's largest miBlary costraciors roo-

wizh che competer or Iradaced
whan 1e CAOUY |3 comemratl
ating wver ickpieee Loy o
SaLs aetwozks with ctber cocepet-
Lo N

The pougrarza ca= cagy thems-
scives Seothe cocspeter's PGS

the Progran can be pamsed o
léllmalmmn

lwn yen e bt of
e saltware’s crontor, the pro-
Eram rmight C30 & PIOVICHIVE
bar ccherwins Barmiess esiepe
13 Eppear on (e Clespuier’s
xcrean. O i could spsemsatically
deslrwy dils & e ooy ]

sioaly charge e Dwpartrest
for hundredc of milleas of Gadlaes pald
%0 corsskanes, often wihoer Jaitcs-

won

The report of e brveatipation sald
Sl rether e mbtary’s camret
ey ner, the contracians’ own poliches
are Mdacrae 33 sertire thar O Gow
STRReal Goes B3¢ Improperty pay for
prsniely arrangsd cossuting wark
Scawe Delonse DeparGoend ofickds

changes.
“bthlﬂwhuﬂuﬁ
CORITITES 10 woo conaliamis I per-
Sorming wark for e Pesiagon, e
wOrk il Grectly Deeii D raibiary
o 1 010 be pad bor By Lhe Defierne De
partmest. Ofie=, Pentagon
wr il cont Lz ot et

mewnty. In i cam, the vinss
progrars & rethlng more than
reprodacs Re! rapedy

The pOoEraee wis sppacstly &
real of nwrui. whch

fuxmf\!(rh:r.(.‘l Colarse ?

Beoadcr Lovk ot Comseliants

The Justce Dopeie Lrsest's con Lrwsry
cravdsal ool pelion bes focesed ol
trethon o9 commukansts gad Suetr role
the Cexgprery =d saling of
nﬂmlh‘ar-lna-mmmm
« d tr g W00




Robert Morris Jr.

INFORMATIONWEEK

JUDGMENT DAY

The Sentencing of Robert Morr




How the Morris Worm Worked

If the user, however, enters a name
string that overflows the buffer, the
bytes in that name will overwrite the
data on the stack.

Now when the function returns, it
will jump 1nto the code written as
part of the name, thereby executing
the worm'’s instructions.

new code

stack




The Extended Instruction Set

-1xx LOADX xx Loads the value from address xx into XR
-2XX STOREX xx Stores the value from XR into address xx
-3xx LOAD xx (XR) Loads AC with the contents of xx + XR
—-4xx STORE xx (XR) Stores AC into address xx + XR

-500 RETURN Returns from a function

-5xx CALL xx Call the function at address xx

- 6xX PUSH xx Push the contents of xx on the stack

-7 xx POP xx Pops the top element on the stack into xx
-8xx INCHAR Xxx Reads a character code into address xx
-9xx OUTCHAR xx Prints the character code in address xx




Index Registers

* The HelloWorld3.td program avoids the self-modifying
strategy by using the Toddler machine’s index register (XR),
which automatically adds the contents of the index register to
the address given 1n a LOAD or STORE Instruction.

« The roapx and STOREX Instructions load and store the
contents of the XR itself. Supplying the (XR) suffix on a
LOAD Or STORE Instruction changes what memory address 1s
referenced.



Hello World: Using the Index Register

/*
* File: HelloWorld3.td

* Writes out "hello, world" using the index register.

*/

start: LOAD {#msg /* Load the address of the string */
CALL strout /* Call the function to output a string */
HALT /* And halt */

strout: STORE addr /* Store current address */
LOADX addr /* Load that address into the XR */
LOADX 0 (XR) /* Load the value at that address */
JUMPZ ret /* A zero character marks the end */
STORE ch /* Store the character */
OUTCHAR ch /* Write it out */
LOAD addr /* Get the current address */
ADD #1 /* Move to the next one */
JUMP strout /* And go back for more */

ret: RETURN /* Return from the strout function */

msqg: "hello, world"

addr: 0

ch: 0




The End



