
Extending Toddler

Chris Gregg, based on slides by Eric Roberts
CS 208E

October 15, 2021

-1xx LOADX xx Loads the value from address xx into XR
-2xx STOREX xx Stores the value from XR into address xx
-3xx LOAD xx(XR) Loads AC with the contents of xx + XR
-4xx STORE xx(XR) Stores AC into address xx + XR

-8xx INCHAR xx Reads a character code into address xx
-9xx OUTCHAR xx Prints the character code in address xx

-500 RETURN Returns from a function
-5xx CALL xx Call the function at address xx
-6xx PUSH xx Push the contents of xx on the stack
-7xx POP xx Pops the top element on the stack into xx

The Concept of a Stack
• A stack is a data structure in which the
elements are accessible only in a last-
in/first-out order. The operations on a
stack are push, which adds a value to
the top of the stack, and pop, which
removes and returns the top value.

• One of the most common metaphors
for the stack concept is a spring-loaded
storage tray for dishes. Adding a new
dish to the stack pushes any previous
dishes downward. Taking the top dish
away allows the dishes to pop back up.

• Stacks are important in von Neumann
machines because function calls obey a
last-in/first-out discipline.

The Toddler System Stack
• Like all modern hardware, the Toddler machine implements a
stack in hardware to simplify dividing programs up into
independent functions.

• The Toddler stack lives at the highest addresses in memory, so
the bottom of a stack is at address 99, and the stack grows
toward lower memory addresses.

• The address of the element at the top of the stack is stored in
the register SP. If the SP is 00, that means the stack is empty.

• Pushing a value on the stack corresponds to subtracting one
from the SP and then storing a value in the resulting address.

• Popping the top value from the stack reverses the process by
taking the current contents of the word addressed by SP and
then adding one to SP.

Functions and Stacks
• The CALL instruction pushes the current value of the PC
(which has already been incremented to refer to the next
instruction) on the stack. This value is called the return
address.

• The RETURN instruction pops the top value on the stack into
the PC, which has the effect of returning to the point just after
the CALL instruction.

The Extended Instruction Set

-1xx LOADX xx Loads the value from address xx into XR
-2xx STOREX xx Stores the value from XR into address xx
-3xx LOAD xx(XR) Loads AC with the contents of xx + XR
-4xx STORE xx(XR) Stores AC into address xx + XR

-8xx INCHAR xx Reads a character code into address xx
-9xx OUTCHAR xx Prints the character code in address xx

-500 RETURN Returns from a function
-5xx CALL xx Call the function at address xx
-6xx PUSH xx Push the contents of xx on the stack
-7xx POP xx Pops the top element on the stack into xx

Exercise: Multiply as a Function
• Rewrite the Multiply.td program so that it defines a
function called mult that takes values in the variables n1 and
n2 and returns its answer in a variable called result.

Console
?
720

6

• Use that function to write a program called Factorial.td
that computes the factorial of an integer. The largest factorial
that fits in three digits is 6!, so a sample run might look like
this:

The Extended Instruction Set

-1xx LOADX xx Loads the value from address xx into XR
-2xx STOREX xx Stores the value from XR into address xx
-3xx LOAD xx(XR) Loads AC with the contents of xx + XR
-4xx STORE xx(XR) Stores AC into address xx + XR

-8xx INCHAR xx Reads a character code into address xx
-9xx OUTCHAR xx Prints the character code in address xx

-500 RETURN Returns from a function
-5xx CALL xx Call the function at address xx
-6xx PUSH xx Push the contents of xx on the stack
-7xx POP xx Pops the top element on the stack into xx

Class Example: Hello, World
• The INCHAR and OUTCHAR instructions are similar to INPUT
and OUTPUT except that they read and write the numeric
representation of a single character.

• The rest of this lecture develops three implementations of a
program that prints the string “hello, world” on the console.

Console
hello, world

Hello World: The Brute Force Version
/*
* File: HelloWorld1.td
* --------------------
* Writes out "hello, world" character by character.
*/

start: OUTCHAR #104 /* The code for the character 'h' */
OUTCHAR #101 /* 'e' */
OUTCHAR #108 /* 'l' */
OUTCHAR #108 /* 'l' */
OUTCHAR #111 /* 'o' */
OUTCHAR #44 /* ',' */
OUTCHAR #32 /* ' ' */
OUTCHAR #119 /* 'w' */
OUTCHAR #111 /* 'o' */
OUTCHAR #114 /* 'r' */
OUTCHAR #108 /* 'l' */
OUTCHAR #100 /* 'd' */
OUTCHAR #10 /* The newline character ('\n') */
HALT

Self-Modifying Code
• One of the defining features of the von Neumann architecture
is that instructions and data are stored in the same memory.
That fact makes it possible for programs to modify their own
instructions by treating them just like any other numeric data.

• The HelloWorld2.td program uses this technique to create
an instruction that prints a character from the address that is
the start of the string "hello, world" plus the value of the
index i. It then stores that instruction in the program and
executes it.

• Programs that change their own instructions are said to be
self-modifying. In early machines, this strategy was often the
only way to accomplish certain operations. Today, it is
generally seen as a dangerous programming practice.

Hello World: Self-Modifying Code
/*
* File: HelloWorld2.td
* --------------------
* Writes out "hello, world" using self-modifying code.
*/

start: LOAD #msg /* Load the address of the string */
CALL strout /* Call the function to output a string */
HALT /* And halt */

strout: STORE addr /* Store current address */
LOAD ldins /* Load a word with a LOAD 0 instruction */
ADD addr /* Add the address offset */
STORE patch /* Store the LOAD in the next word */

patch: 0 /* This will get filled in */
JUMPZ ret /* A zero character marks the end */
STORE ch /* Store the character */
OUTCHAR ch /* Write it out */
LOAD addr /* Get the current address */
ADD #1 /* Move to the next one */
JUMP strout /* And go back for more */

ret: RETURN /* Return from the strout function */

msg: "hello, world"
ldins: LOAD 0
addr: 0
ch: 0

The Ugliest Program I Ever Wrote
Guy Steele

https://www.infoq.com/presentations/Thinking-Parallel-Programming/

The Internet Worm

Robert Morris Jr.

One of Morris’s techniques was to exploit a bug in a system
utility called fingerd, which was responsible for giving
information about the users of a system. The fingerd code was
susceptible to a buffer overflow attack, in which the hacker
writes data past the end of an array. Failing to test the array
bounds makes it possible to insert the worm’s own code on the
system stack.

stack

Storage for local variables in Unix
is provided by a stack, which grows
toward low memory addresses as
functions are called.

How the Morris Worm Worked

return address

The fingerd code allocates a stack
buffer to hold the user name, which
might be declared like this:

char buffer[20];

stack frames
from earlier calls

e r o b

e r t s

\0

What’s supposed to happen is that
the name is read into the buffer and
is then processed by some function,
which eventually returns.

If the user, however, enters a name
string that overflows the buffer, the
bytes in that name will overwrite the
data on the stack.

return address

t h i s

- i s -

- a - -

l o n g

n a m e

new return address

new code

Now when the function returns, it
will jump into the code written as
part of the name, thereby executing
the worm’s instructions.

The Extended Instruction Set

-1xx LOADX xx Loads the value from address xx into XR
-2xx STOREX xx Stores the value from XR into address xx
-3xx LOAD xx(XR) Loads AC with the contents of xx + XR
-4xx STORE xx(XR) Stores AC into address xx + XR

-8xx INCHAR xx Reads a character code into address xx
-9xx OUTCHAR xx Prints the character code in address xx

-500 RETURN Returns from a function
-5xx CALL xx Call the function at address xx
-6xx PUSH xx Push the contents of xx on the stack
-7xx POP xx Pops the top element on the stack into xx

Index Registers
• The HelloWorld3.td program avoids the self-modifying
strategy by using the Toddler machine’s index register (XR),
which automatically adds the contents of the index register to
the address given in a LOAD or STORE instruction.

• The LOADX and STOREX instructions load and store the
contents of the XR itself. Supplying the (XR) suffix on a
LOAD or STORE instruction changes what memory address is
referenced.

Hello World: Using the Index Register
/*
* File: HelloWorld3.td
* --------------------
* Writes out "hello, world" using the index register.
*/

start: LOAD #msg /* Load the address of the string */
CALL strout /* Call the function to output a string */
HALT /* And halt */

strout: STORE addr /* Store current address */
LOADX addr /* Load that address into the XR */
LOADX 0(XR) /* Load the value at that address */
JUMPZ ret /* A zero character marks the end */
STORE ch /* Store the character */
OUTCHAR ch /* Write it out */
LOAD addr /* Get the current address */
ADD #1 /* Move to the next one */
JUMP strout /* And go back for more */

ret: RETURN /* Return from the strout function */

msg: "hello, world"
addr: 0
ch: 0

The End

