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Mathematics Enters the 20th Century

David Hilbert (1862-1943)

If we would obtain an idea of the probable 
development of mathematical knowledge in the 
immediate future, we must let the unsettled 
questions pass before our minds and look over the 
problems which the science of today sets and 
whose solution we expect from the future.

• In 1900, the eminent German mathematician 
David Hilbert set out a series of challenging 
problems for mathematicians in the twentieth 
century.


• Many of those problems turned out to be 
relatively easy, but several remain unsolved 
even today.


• Several of Hilbert’s 23 original problems, 
along with others he devised later, were 
resolved in a way that shook the foundations 
of the mathematical community.



Hilbert’s Entscheidungsproblem
• Of the problems that have significance to computer science, 

the most important is the Entscheidungsproblem, which was 
posed in 1928.  In informal terms, the Entscheidungsproblem 
can be expressed as follows:


Is it possible to find a mechanical procedure that can determine, 
given a specific proposition in a formal system of symbolic logic, 
whether that proposition is provable within that system?

• Hilbert and the mathematicians of his day assumed that such a 
mechanical procedure was indeed possible, but a series of 
mathematical results in the 1930s—by Kurt Gödel, Alonzo 
Church, Alan Turing, and Emil Post—showed that such a 
mechanical procedure is a logical impossibility.



Kurt Gödel's Incompleteness
• Kurt Gödel had a set of "incompleteness theorems" that 

discussed formal systems with respect to consistency, 
completeness, decidability.

• First incompleteness theorem:


• Any consistent formal system, F, within which a certain 
amount of elementary arithmetic can be carried out is 
incomplete; i.e., there are statements of the language of 
F, which can neither be proved nor disproved in F.


• Second incompleteness theorem:

• For any consistent system F within which a certain 

amount of elementary arithmetic can be carried out, the 
consistency of F cannot be proved in F itself.



Kurt Gödel's Incompleteness
• Gödel's Incompleteness theorems can be thought of as follows:


• Any set of axioms is either self-contradictory, or cannot 
prove some true statement about numbers. You can still 
prove every logical consequence of the axioms you have, 
but you can never get enough axioms to ensure that every 
true statement about numbers is a logical consequence of 
them.


• In other words: there will always be true facts that are not a 
logical consequence of your axioms.



Alan Turing’s Contribution

Alan Turing (1912-1954)

• Alan Mathison Turing, a young British 
mathematician just out of Cambridge, 
helped settle the Entscheidungsproblem 
by developing a model for computation 
by a mechanical procedure.


• Turing’s model—which is now known as 
a Turing machine—is a central concept 
in theoretical computer science.


• Turing is widely recognized as one of the 
most important figures in the history of 
computer science.  The field’s most 
prestigious prize is the Turing Award, 
which is given in his honor. 



Breaking the Code

https://www.youtube.com/watch?v=udW0j96vAOk

22:38 - 24:40, 28:30 - 34:55

https://www.youtube.com/watch?v=udW0j96vAOk


Designing the Turing Machine
• In his groundbreaking 1936 paper, “On computable numbers, 

with an application to the Entscheidungsproblem,” Turing 
described the process of computation in informal terms:


Computing is normally done by writing certain symbols on 
paper.  We may suppose this paper is divided into squares like a 
child’s arithmetic book.  In elementary arithmetic the two-
dimensional character of the paper is sometimes used.  But such 
a use is always avoidable, and I think it will be agreed that the 
two-dimensional character of paper is no essential of 
computation.  I assume then that the computation is carried out 
on a one-dimensional paper, i.e. on a tape divided into squares.  I 
shall also suppose that the number of symbols which may be 
printed is finite. . . .

xxxThe behaviour of the computer at any moment is determined 
by the symbols which he is observing, and his “state of mind” at 
that moment. We may suppose that there is a bound B to the 
number of symbols or squares which the computer can observe at 
one moment. If he wishes to observe more, he must use 
successive observations. We will also suppose that the number of 
states of mind which need be taken into account is finite. . . .

xxxThe simple operations must therefore include:

(a)xChanges of the symbol on one of the observed squares.

(b)xChanges of one of the squares observed to another square 
within L squares of the previously observed squares.

xxxIt may be that some of these changes necessarily involve a 
change of state of mind.  The most general single operation must 
therefore be taken to be one of the following:

(a)xA possible change of symbol together with a possible change 
of state of mind.

(b)xA possible change of observed squares, together with a 
possible change of state of mind.

The operation actually performed is determined, as has been 
suggested above, by the state of mind of the computer and the 
observed symbols. 

• These operations and the notion of a “state of mind” form the 
basis for the Turing machine.




Turing Machine Components

Computation requires:

– Scratch paper

– An unbounded amount of space

– At least two symbols

– A read/write mechanism

– Some form of program control
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The Lego Turing Machine

https://www.youtube.com/watch?v=cYw2ewoO6c4 

https://www.youtube.com/watch?v=cYw2ewoO6c4


Representing Numbers
• Even though the standard Turing machine alphabet consists of 

the digits 0 and 1, it is not practical to represent numbers in 
binary.


• Even though the standard Turing machine alphabet consists of 
the digits 0 and 1, it is not practical to represent numbers in 
binary.  Why?

• Instead, numbers will be written in unary in which each 
number is written as a sequence of 1s. The 0 symbol is used to 
indicate the start and end of a number.

• An input configuration for the Turing machine is well-formed 
if it consists of a single number in which the tape head appears 
over the first 1 digit.

• A Turing machine program is a function if it starts with one 
well-formed number and ends with a well-formed number.



Online Turing Machine Simulator
https://turingmachinesimulator.com
In order to convert from our version of the Turing machine description to the online 
simulator, you can run a script here (the “l”s are lowercase Ls)


https://tinyurl.com/yccl9e2l

To use the spreadsheet:


1. Go to the link above, and sign into Google.


2. Make a copy of the spreadsheet: File->Make a copy…


3. Name and write your program (default is the Add3 program) in red.


4. Click on the “Convert Turing Machine” button.


5. Click “Continue” when asked to authorize.


6. Click your account.


7. When you see “turing_machine_conversion wants to access your Google Account…” 
scroll down and click “Allow”


8. Copy/paste the column E3 into https://turingmachinesimulator.com 

https://turingmachinesimulator.com
https://tinyurl.com/yccl9e2l
https://turingmachinesimulator.com


The Add3 Function (M+3)
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Try it with an input value of 2:



The Doubler Function (M2x)
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The Doubler Function (M2x)
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How does this machine work?



https://turingmachinesimulator.com
// Double a number with a 
turning machine


name: doubler

init: s1

accept: s0


s1,0

s0,0,>


s1,1

s2,0,>


s2,_

s3,0,>


s2,0

s3,0,>


s2,1

s2,1,>


s3,_

s4,1,>

s3,0

s4,1,>


s3,1

s3,1,>


s4,0

s5,1,<


s4,_

s5,1,<


s5,0

s6,0,<


s5,1

s5,1,<


s6,0

s1,0,>


s6,1

s6,1,<

https://turingmachinesimulator.com


Exercise: Subtraction

0 0 1 0 0 0 0 1 1 0 01 1 1 0

Write a program that takes two numbers on the tape and 
subtracts the second from the first.  Thus, if the initial tape 
contains

the final tape should look like this:

0 0 0 0 0 0 0 0 0 0 00 1 1 0
Assume for the moment that the first number is larger than the 
second.  What happens to your program if that isn’t true?



Composing Machines (M2x+3)
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• Start with the two machines.

1L8 1L7
1L9

7
8

1R99 1L0

• Renumber the states in M+3.

1L8 1L7
1L9

7
8

1R99 1L0

• Combine the machines.
• Change halt transitions in M2x to 

jump to M+3. 

0R7Suppose you wanted to compute the 
function 2x + 3, given that you have 
the machines M2x and M+3.

M2x

M+3



The Busy Beaver Problem

Tibor Radó (1895-1965)

• Although it is possible to introduce the 
notion of undecidable problems using 
Turing’s original argument involving a 
“universal” Turing machine, it is much 
easier to do so in the context of a more 
recent problem posed by Tibor Radó in 
the early 1960s:

What is the largest finite number of 1s that 
can be produced on blank tape using a 
Turing machine with n states?

• This problem is called the Busy Beaver Problem.



The End


