
Turing Machines

Chris Gregg, based on slides by Eric Roberts

CS 208E

October 18, 2021

0 0 0 0 0 0 0 1 0 0 00 0 1 1

Mathematics Enters the 20th Century

David Hilbert (1862-1943)

If we would obtain an idea of the probable
development of mathematical knowledge in the
immediate future, we must let the unsettled
questions pass before our minds and look over the
problems which the science of today sets and
whose solution we expect from the future.

• In 1900, the eminent German mathematician
David Hilbert set out a series of challenging
problems for mathematicians in the twentieth
century.

• Many of those problems turned out to be
relatively easy, but several remain unsolved
even today.

• Several of Hilbert’s 23 original problems,
along with others he devised later, were
resolved in a way that shook the foundations
of the mathematical community.

Hilbert’s Entscheidungsproblem
• Of the problems that have significance to computer science,

the most important is the Entscheidungsproblem, which was
posed in 1928. In informal terms, the Entscheidungsproblem
can be expressed as follows:

Is it possible to find a mechanical procedure that can determine,
given a specific proposition in a formal system of symbolic logic,
whether that proposition is provable within that system?

• Hilbert and the mathematicians of his day assumed that such a
mechanical procedure was indeed possible, but a series of
mathematical results in the 1930s—by Kurt Gödel, Alonzo
Church, Alan Turing, and Emil Post—showed that such a
mechanical procedure is a logical impossibility.

Kurt Gödel's Incompleteness
• Kurt Gödel had a set of "incompleteness theorems" that

discussed formal systems with respect to consistency,
completeness, decidability.

• First incompleteness theorem:

• Any consistent formal system, F, within which a certain
amount of elementary arithmetic can be carried out is
incomplete; i.e., there are statements of the language of
F, which can neither be proved nor disproved in F.

• Second incompleteness theorem:

• For any consistent system F within which a certain

amount of elementary arithmetic can be carried out, the
consistency of F cannot be proved in F itself.

Kurt Gödel's Incompleteness
• Gödel's Incompleteness theorems can be thought of as follows:

• Any set of axioms is either self-contradictory, or cannot
prove some true statement about numbers. You can still
prove every logical consequence of the axioms you have,
but you can never get enough axioms to ensure that every
true statement about numbers is a logical consequence of
them.

• In other words: there will always be true facts that are not a
logical consequence of your axioms.

Alan Turing’s Contribution

Alan Turing (1912-1954)

• Alan Mathison Turing, a young British
mathematician just out of Cambridge,
helped settle the Entscheidungsproblem
by developing a model for computation
by a mechanical procedure.

• Turing’s model—which is now known as
a Turing machine—is a central concept
in theoretical computer science.

• Turing is widely recognized as one of the
most important figures in the history of
computer science. The field’s most
prestigious prize is the Turing Award,
which is given in his honor.

Breaking the Code

https://www.youtube.com/watch?v=udW0j96vAOk

22:38 - 24:40, 28:30 - 34:55

https://www.youtube.com/watch?v=udW0j96vAOk

Designing the Turing Machine
• In his groundbreaking 1936 paper, “On computable numbers,

with an application to the Entscheidungsproblem,” Turing
described the process of computation in informal terms:

Computing is normally done by writing certain symbols on
paper. We may suppose this paper is divided into squares like a
child’s arithmetic book. In elementary arithmetic the two-
dimensional character of the paper is sometimes used. But such
a use is always avoidable, and I think it will be agreed that the
two-dimensional character of paper is no essential of
computation. I assume then that the computation is carried out
on a one-dimensional paper, i.e. on a tape divided into squares. I
shall also suppose that the number of symbols which may be
printed is finite. . . .

xxxThe behaviour of the computer at any moment is determined
by the symbols which he is observing, and his “state of mind” at
that moment. We may suppose that there is a bound B to the
number of symbols or squares which the computer can observe at
one moment. If he wishes to observe more, he must use
successive observations. We will also suppose that the number of
states of mind which need be taken into account is finite. . . .

xxxThe simple operations must therefore include:

(a)xChanges of the symbol on one of the observed squares.

(b)xChanges of one of the squares observed to another square
within L squares of the previously observed squares.

xxxIt may be that some of these changes necessarily involve a
change of state of mind. The most general single operation must
therefore be taken to be one of the following:

(a)xA possible change of symbol together with a possible change
of state of mind.

(b)xA possible change of observed squares, together with a
possible change of state of mind.

The operation actually performed is determined, as has been
suggested above, by the state of mind of the computer and the
observed symbols.

• These operations and the notion of a “state of mind” form the
basis for the Turing machine.

Turing Machine Components

Computation requires:

– Scratch paper

– An unbounded amount of space

– At least two symbols

– A read/write mechanism

– Some form of program control

A Sample Turing Machine

0

1R2 1L2
1L1

1
2 1L0

0 1

0 0 0 0 0 0 0 0 0 0

A Sample Turing Machine

0

1R2 1L2
1L1

1
2 1L0

0 1

0 0 0 0 0 0 0 0 0 0

A Sample Turing Machine

0

1R2 1L2
1L1

1
2 1L0

0 1

0 0 0 0 0 0 0 0 0 01

A Sample Turing Machine

0

1R2 1L2
1L1

1
2 1L0

0 1

0 0 0 0 0 0 0 0 0 011

A Sample Turing Machine

0

1R2 1L2
1L1

1
2 1L0

0 1

0 0 0 0 0 0 0 0 0 011

A Sample Turing Machine

0

1R2 1L2
1L1

1
2 1L0

0 1

0 0 0 0 0 0 0 0 0 0111

A Sample Turing Machine

0

1R2 1L2
1L1

1
2 1L0

0 1

0 0 0 0 0 0 0 0 0 01111

A Sample Turing Machine

0

1R2 1L2
1L1

1
2 1L0

0 1

0 0 0 0 0 0 0 0 0 01111

The Lego Turing Machine

https://www.youtube.com/watch?v=cYw2ewoO6c4

https://www.youtube.com/watch?v=cYw2ewoO6c4

Representing Numbers
• Even though the standard Turing machine alphabet consists of

the digits 0 and 1, it is not practical to represent numbers in
binary.

• Even though the standard Turing machine alphabet consists of
the digits 0 and 1, it is not practical to represent numbers in
binary. Why?

• Instead, numbers will be written in unary in which each
number is written as a sequence of 1s. The 0 symbol is used to
indicate the start and end of a number.

• An input configuration for the Turing machine is well-formed
if it consists of a single number in which the tape head appears
over the first 1 digit.

• A Turing machine program is a function if it starts with one
well-formed number and ends with a well-formed number.

Online Turing Machine Simulator
https://turingmachinesimulator.com
In order to convert from our version of the Turing machine description to the online
simulator, you can run a script here (the “l”s are lowercase Ls)

https://tinyurl.com/yccl9e2l

To use the spreadsheet:

1. Go to the link above, and sign into Google.

2. Make a copy of the spreadsheet: File->Make a copy…

3. Name and write your program (default is the Add3 program) in red.

4. Click on the “Convert Turing Machine” button.

5. Click “Continue” when asked to authorize.

6. Click your account.

7. When you see “turing_machine_conversion wants to access your Google Account…”
scroll down and click “Allow”

8. Copy/paste the column E3 into https://turingmachinesimulator.com

https://turingmachinesimulator.com
https://tinyurl.com/yccl9e2l
https://turingmachinesimulator.com

The Add3 Function (M+3)

0

1L2 1L1
1L3

1
2

0 1

0 0 0 0 0 0 0 0 0 01 1 1 1 1

1R33 1L0

Try it with an input value of 2:

The Doubler Function (M2x)

0R0 0R2
0R3

1
2 1R2

0 1

1R43 1R3
1L5
0L6

4
5 1L5

0R16 1L6

The Doubler Function (M2x)

0R0 0R2
0R3

1
2 1R2

0 1

1R43 1R3
1L5
0L6

4
5 1L5

0R16 1L6

How does this machine work?

https://turingmachinesimulator.com
// Double a number with a
turning machine

name: doubler

init: s1

accept: s0

s1,0

s0,0,>

s1,1

s2,0,>

s2,_

s3,0,>

s2,0

s3,0,>

s2,1

s2,1,>

s3,_

s4,1,>

s3,0

s4,1,>

s3,1

s3,1,>

s4,0

s5,1,<

s4,_

s5,1,<

s5,0

s6,0,<

s5,1

s5,1,<

s6,0

s1,0,>

s6,1

s6,1,<

https://turingmachinesimulator.com

Exercise: Subtraction

0 0 1 0 0 0 0 1 1 0 01 1 1 0

Write a program that takes two numbers on the tape and
subtracts the second from the first. Thus, if the initial tape
contains

the final tape should look like this:

0 0 0 0 0 0 0 0 0 0 00 1 1 0
Assume for the moment that the first number is larger than the
second. What happens to your program if that isn’t true?

Composing Machines (M2x+3)

0R0 0R2
0R3

1
2 1R2

0 1

1R43 1R3
1L5
0L6

4
5 1L5

0R16 1L6

1L2 1L1
1L3

1
2

1R33 1L0

• Start with the two machines.

1L8 1L7
1L9

7
8

1R99 1L0

• Renumber the states in M+3.

1L8 1L7
1L9

7
8

1R99 1L0

• Combine the machines.
• Change halt transitions in M2x to

jump to M+3.

0R7Suppose you wanted to compute the
function 2x + 3, given that you have
the machines M2x and M+3.

M2x

M+3

The Busy Beaver Problem

Tibor Radó (1895-1965)

• Although it is possible to introduce the
notion of undecidable problems using
Turing’s original argument involving a
“universal” Turing machine, it is much
easier to do so in the context of a more
recent problem posed by Tibor Radó in
the early 1960s:

What is the largest finite number of 1s that
can be produced on blank tape using a
Turing machine with n states?

• This problem is called the Busy Beaver Problem.

The End

