Uncomputable Functions
{oTofofol*[1}1 111 0}

0 1
11 1R2 | 1LO
2 OR3 | 1R2
3 1L3 | 1L1

Chris Gregg, based on slides by Eric Roberts
CS 208E
October 22, 2021



Composing Machines (M,, . ;)

Suppose you wanted to compute the
function 2x + 3, given that you have
the machines M,, and M ..

e Start with the two machines.
« Renumber the states in M.
* (Combine the machines.

« Change halt transitions in M, to
jump to M.



The Busy Beaver Problem

« Although it 1s possible to introduce the
notion of undecidable problems using
Turing’s original argument involving a
“universal” Turing machine, it 1s much
easier to do so in the context of a more
recent problem posed by Tibor Radd in
the early 1960s:

What 1s the largest finite number of 1s that
can be produced on blank tape using a
Turing machine with » states?

s
w 2 X S
.
r4 ‘
X y »
.
. -
N
e .
r
| -

Tibor Rado6 (1895-1965)

« This problem 1s called the Busy Beaver Problem.



The Function BB(#)

« The Busy Beaver problem has a natural expression as a
mathematical function. If n represents the number of states, let
BB(n) represent the largest finite number of 1s that can be
written on blank tape by a machine of that size.

* For very small values on #, it is fairly easy to determine the
value of the BB function:

BB(1) = 1
BB(2) = 4
BB(3) = 6

 From there, the situation gets much harder. Proving that
BB(4) = 13 was a Ph.D. thesis. No one 1s yet sure of the
values for any higher number, although conjectures exist for
BB(5) and BB(6).

https://tinvurl.com/v7wa952k


https://tinyurl.com/y7wg952k

Known Bounds for BB(n)

at least 4098

A

at least 3.5 x 1018267

A




Computing BB(n)

« Given that BB(») 1s a mathematical function, 1t makes sense to
ask whether that function can be computed by a Turing
machine. In other words, 1s there a machine Mg, that takes a

number of 1s representing »n as input and writes out a number
of 1s representing BB(n) as output?

It turns out that the answer is no. There 1s no Turing machine
Mgy that computes the BB function. What’s more, we’ll be

able to prove that such a function cannot be computed at all.

 The BB function 1s an example of an uncomputable function,
which 1s the profound new 1dea that Alan Turing and several of
his contemporaries introduced to the mathematical world.



Observations about BB(n)

* In order to resolve the question about whether BB(n) can be
computed by a Turing machine, it helps to make two
observations about the BB function:

1. BB(n) 1s a well-defined mathematical function. It does exist.
For every number of states, the number of possible Turing
machines 1s finite. There must be some machine that writes out
at least as many 1s as any other.

2. BB(n) must be strictly increasing. With an extra state, it 1s
always possible to write at least one more 1 than 1s possible with
a Turing machine with fewer states.



Proof by Contradiction

* In seeking to prove that BB(n) 1s not computable by a Turing
machine, the simplest approach 1s to employ a strategy called
proof by contradiction. In proof by contradiction, you start by
assuming the opposite of what you wish to prove, and then
show—typically by constructing a specific example—that
doing so leads to an absurd conclusion or that violates one of
the assumptions. If the steps in your construction are correct,
the only questionable part of the process 1s the original
assumption.

 Thus, to prove that BB(n) is not computable by a Turing
machine, we start by assuming that i1t 1s. That means that we
can assume the existence of a machine Mg, with f§ states that

takes » as input and writes out BB(#) 1s as output.

 The essence of the contradiction 1s to construct a machine with
k states that writes out more than BB(k) 1s.



Steps 1n the Proof

number of total number of
states 1s generated
p p
7 B+7
6 2B+ 14
p BB(2p + 14)
1 BB(2B + 14) + 1

2B + 14




But Wait. .. Why Can’t You . . .

* Despite the proof by contradiction, the idea that BB(n) is
uncomputable seems wrong. After all, we can simulate a
Turing machine. Why isn’t it possible to solve this problem
using the following approach:

1. Generate every Turing machine with n states. There is only a
finite number of such machines.

2. For each machine, run the Turing machine simulator and count
the number of 1s it generates.

3. Keep track of the largest value so far and report that number at
the end of the run.

e There 1s a problem here. Some of the machines go on forever,
so there 1s no way to terminate the computation in step 2.

» If 1t were possible to tell whether a Turing machine would halt,
it would be possible to compute the BB(#n) function.



The Halting Problem

 https://www.youtube.com/watch?v=92WHN-pAFCs
 https://www.youtube.com/watch?v=r GZ7ubUOM


https://www.youtube.com/watch?v=92WHN-pAFCs
https://www.youtube.com/watch?v=r__GZ7ubU0M

The Halting Problem 1n JavaScript

/*
* File: Paradox.]js
X mmmm e e e ————

* This program uses the assumption that doesProgramHalt exists to
* generate a paradox.

*/

function paradox () ({
if (doesProgramHalt ("Paradox.]js")) ({
Console.println ("The program runs forever.");
while (true) {
/* Loop forever doing nothing */
}
} else {
Console.println("The program halts.");
}
}

/*
* Reads the code stored in the named file and determines whether the first
* function in that file halts, returning true or false accordingly.

*/
function doesProgramHalt (filename) ({

}




The Church-Turing Thesis

* The question of what 1s computable by a
Turing machine 1s important in a search
for what 1s generally computable mostly
because no one has ever found a more
powerful model.

 Most computer scientists believe what
has come to be known as the Church-
Turing thesis:

No method of computation carried out £ |
by a mechanical process can be more Alonzo Church (1903-1995)
powerful than a Turing machine.

« This claim remains a conjecture, and it 1s not clear there 1s any
way to prove it. At the same time, it has so far resisted all
efforts to disprove it.



Tiling Problems

 The notion of undecidability comes up in many different
contexts, most of which seem completely unrelated to the idea
of Turing machines.

* One particularly interesting application appears if you try to
answer the question of whether a set of tiles—constrained by
rules that the colors on their edges have to match—can be
positioned so that they completely fill the plane.

* Tiling problems gained some mathematical attention in the
1970s when Roger Penrose, Professor of Mathematics at
Oxford developed a set of tiles that would tile the plane but
only 1n a nonperiodic fashion.



Penrose Tilings







Ings

10dic Islamic Til

Nonper

ke v
-

5

A
N
.

PNV s e
st Td et
L 2in Y, P

o)

e AN,
’ 3 e
S

-
>

-
-
.

"
o

-
l.:a:

SR e W
L LA v
- - o R S AR

-‘ "

L

.

Mosaic from the Darb-i Imam shrine, Isfahan, Iran, 15c



Uncomputability of Tiling

* One of the surprising mathematical results of the 20th century
1s that the question of whether a set of tiles will cover the plane
1S uncomputable.

 The strategy for proving this result uses tiles to simulate a
Turing machine, configuring the tiles in such a way that the
tiles cover the complete plane only 1f that Turing machine runs
forever starting on blank tape. Since the halting problem is
undecidable, the tiling problem must be undecidable also.

e In the remaining time, I will sketch the proof of a slightly
simpler result, in which the set of tiles contains a designated
start tile that must occur somewhere 1n the pattern:

0

S




Stmulating a Turing Machine 1n Tiles

« Suppose that your set starts with the following six tile types:

of el |
Lol |

 How far could you get 1f you start by placing the start tile?



Getting Started

Nothing goes up here yet.

0

O s

0

0

0

Lol
C D




Simulating a 1R1 Instruction

10 00K
F G H | J

E

K




Completing the Tiling

0 0 0 1 1
qofofo oo
oo fio flo ol [L ol e il




Removing the Origin Constraint

 Requiring a special start tile
makes 1t easier to prove that
tiling 1s uncomputable.

* You can eliminate the start
tile by embedding the Turing
machine simulation inside a
Sierpinski triangle in which
the computation 1s replicated
at different scales.




The End



