
The P = NP Question

Chris Gregg, based on slides by Eric Roberts
CS 208E

October 24, 2021

NP
P

P and NP

or

The P = NP Question

Definitions
• The class P consists of all decision problems that can be
solved in polynomial time by a deterministic Turing machine.

• The class NP consists of all decision problems that can be
solved in polynomial time by a nondeterministic Turing
machine.
– A decision problem is one that has only a yes-or-no answer.
– Polynomial time is a measure of computational complexity that

is bounded by a polynomial.
– A deterministic Turing machine follows only one execution

path at a time.
– A nondeterministic Turing machine can follow multiple paths

in parallel.

• The P=NP question is whether these two classes are the same.

Preview: Computational
Complexity

https://www.youtube.com/watch?v=M
yeV2_tGqvw

https://www.youtube.com/watch?v=MyeV2_tGqvw

Graphs of the Complexity Classes
ru

nn
in

g
tim

e

problem size

Recursion
• One of the most important great ideas in computer science is
the concept of recursion, which is the process of solving a
problem by dividing it into smaller subproblems of the same
form. The italicized phrase is the essential characteristic of
recursion; without it, all you have is a description of stepwise
refinement of the sort we teach in courses like CS106A.

• The fact that recursive decomposition generates subproblems
that have the same form as the original problem means that
recursive programs will use the same function or method to
solve subproblems at different levels of the solution. In terms
of the structure of the code, the defining characteristic of
recursion is having functions that call themselves, directly or
indirectly, as the decomposition process proceeds.

A Simple Illustration of Recursion
• Suppose that you are the national fundraising director for a
charitable organization and need to raise $1,000,000.

• One possible approach is to find a wealthy donor and ask for
a single $1,000,000 contribution. The problem with that
strategy is that individuals with the necessary combination of
means and generosity are difficult to find. Donors are much
more likely to make contributions in the $100 range.

• Another strategy would be to ask 10,000 friends for $100
each. Unfortunately, most of us don’t have 10,000 friends.

• Recursion offers a more promising strategy. All you need to
do is find ten regional coordinators and ask each one to raise
$100,000. Those regional coordinators in turn delegate the
task to ten local coordinators, each with a goal of $10,000,
and so on until the donations can be raised individually.

A Simple Illustration of Recursion
The following diagram illustrates the recursive strategy for
raising $1,000,000 described on the previous slide:

Goal:
$1,000,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

A Pseudocode Fundraising Strategy
If you were to implement the fundraising strategy in the form of
a JavaScript function, it would look something like this:

function collectContributions(n) {
if (n <= 100) {

Collect the money from a single donor.
} else {

Find 10 volunteers.
Get each volunteer to collect n/10 dollars.
Combine the money raised by the volunteers.

}
}

What makes this strategy recursive is that the line
Get each volunteer to collect n/10 dollars.

will be implemented using the following recursive call:
collectContributions(n / 10);

A Recursive View of Mazes

Q

• Solving a maze algorithmically is
simplest if you use recursion, but
coding that solution requires you to
find the right recursive insight.

• Consider the maze shown at the
right. How can Theseus transform
the problem into one of solving a
simpler maze?

• The insight you need is that a maze
is solvable only if it is possible to
solve one of the simpler mazes that
results from shifting the starting
location to an adjacent square and
taking the current square out of the
maze completely.

A Recursive View of Mazes

Q

• Thus, the original maze is solvable
only if one of the three mazes at
the bottom of this slide is solvable.

• Each of these mazes is “simpler”
because it contains fewer squares.

• The simple cases are:
– Theseus is outside the maze
– There are no directions left to try

Q
Q

Q

Recursion and Backtracking
• The complete recursive solution operates as follows:

+

+

++

+

+ + +

++

+

+ +

+

+

+

+

++

+

++

++++

+

+

+

+

+

+

+

+ +

+ + +

+

Exponential Backtracking
• The time required for the standard backtracking algorithm
grows exponentially if there are large open areas in the maze:

• This exponential behavior is not fundamental to the maze
algorithm. If the program doesn’t unmark the squares as it
backtracks, the program can find the exit in linear time.

+

+

+

++

+

++

+

+

+++

+

+

+

++

Exploiting Nondeterminism

1

• Another approach to solving a maze is to explore all paths
concurrently as you proceed. This strategy is analogous to
cloning yourself at each intersection and sending one clone
down each path.

• Is this parallel strategy more efficient in the general case?

1
11

1

2 2 2
22

2
33

3 3
3 3 3

3 3 3
4 4
4
4
4
4
44

5
55

5555
5
5

6
6

7
7
7
7 7
7 7 7

7
8

Q

Nondeterministic Turing Machines
• As with the nondeterministic maze solver, a nondeterministic
Turing machine can explore more than one solution strategy
at once.

• In its most common formulation, a nondeterministic Turing
machine is defined by allowing each instruction to transition
to several new states. In effect, these multiple transitions
clone the machine, with each of the clones continuing in a
different state.

• It is conventional to define two new states: accept and reject.
A nondeterministic Turing Machine accepts its input if any of
its cloned copies ever reaches the accept state.

Relationship between P and NP
All decision problems

NP
P

NP-Complete Problems
• The search for an answer to the P=NP
question depends on the notion of
NP-complete problems, which was
introduced by Stephen Cook in 1971. In
an informal sense, a problem is
NP-complete if it is provably as difficult
to solve as any other problem in NP.

• The immediate implication of this
definition is that if some NP-complete
problem can be solved in polynomial
time, then all problems in NP can be
solved in polynomial time.

• In practice, one establishes that a problem is NP-complete by
showing that the computation of any nondeterministic Turing
machine can be expressed in that domain.

Stephen Cook (1939–)

https://www.youtube.com/watch?v=OY41QYPI8cw

https://www.youtube.com/watch?v=OY41QYPI8cw

The Seven Bridges of Konigsberg

Bogdan Giuşcă - Public domain, based on the image, CC BY-SA 3.0,Source:
https://commons.wikimedia.org/w/index.php?curid=112920

Euler’s Representation of the Bridges

A

B

C

D

• Leonhard Euler (1707–1783) represented the Konigsberg
bridge problem using a mutigraph, which allows vertices to
be connected by multiple edges:

• An Eulerian cycle is a path that traverses every edge of the
graph exactly once and returns to its starting point.

Euler’s Theorem
• A connected multigraph has an Eulerian cycle if and only if
the degree of each vertex is even.

• Euler’s graph of the bridges of Konigsberg therefore has no
Eulerian cycle because the degree of every vertex is odd:

5

3

A

B

C

D

3

3

• Euler’s theorem provides a necessary and sufficient condition.

Hamiltonian Cycles
• A Hamiltonian cycle is one that passes through every vertex
of the graph exactly once.

• Suppose that G is the following graph:

• Can you find a cycle that contains all the vertices in G?

1

2

3

4
65

1

2

3

4
65

The Petersen Graph

1

2

3

4
5

6

7

8

9

10

• The Danish mathematician Julius Petersen (1839–1910) proved
in 1898 that the following graph is not Hamiltonian:

Ore’s Theorem
• Norwegian mathematician Øystein Ore (1899–1968) proved
that a graph G is Hamiltonian if for all non-adjacent pairs of
vertices x and y, their degree sum is at least the order of G.

• The English physicist Paul Dirac (1902–1984) used Ore’s
theorem to prove that a graph G is Hamiltonian if the degree
of each of the N vertices is at least N / 2.

• Each of these theorem’s provides a sufficient condition for a
Hamiltonian graph, but not a necessary one. Any simple
cycle is a Hamiltonian graph even though it fails these tests:

Recognizing Hamiltonian Graphs Is Hard
• As far as we know, there is no simple test to determine
whether a graph is Hamiltonian.

• In fact, all known algorithms for determining whether a graph
is Hamiltonian take exponential time.

• The Hamiltonian graph problem is an NP-complete problem.
If the Hamiltonian graph problem has a polynomial time
solution, then every problem in NP has a polynomial time
solution.

Traveling Salesman Problem
• One of the classic NP-complete problems, which is closely related to the
Hamiltonian cycle problem, is the Traveling Salesman Problem (often
designated as TSP for short), which asks, Given a list of cities and the
distances between each pair of cities, what is the shortest possible route
that visits each city and returns to the origin city?

—Randall Munroe, XKCD

The Subset-Sum Problem
• Suppose that you have a set of integers called S. The subset-
sum problem asks whether there is a subset of the elements of
S that add up to a particular target value t.

• For example, if S is the set { –3, 5, 7, 10 }, the subset-sum
problem when t is 12 returns the answer true because the
elements in the subset { –3, 5, 10 } add up to 12. By contrast,
if t were 11, the answer is false because it is impossible to
choose a subset of S whose values adds up to 11.

• In his early study of NP-complete problems in 1972, Richard
Karp proved that the subset-sum problem is NP-complete,
although his original papers refer to the problem by a
different name.

• As you will see next week, the subset-sum problem plays a
role in the development of public-key cryptography.

The Knapsack Problem
• The knapsack problem, which dates back to 1897, asks the
following question: Given a set of items, each with a weight
and a value, determine the number of each item to include in a
collection so that you keep the total weight under given limit
and maximize the total value.

• Although the knapsack problem is NP-complete, there are
efficient strategies that often provide good answers. Such
strategies are called heuristics and cannot guarantee the best
possible result.

NP-Complete Problems

—Randall Munroe, XKCD

Graph Coloring

1
2

43

5

1

2 3
4

• Suppose that you have a graph
consisting of a set of vertices
connected by a set of edges, such as
the one shown on the right.

• The vertices of this graph can be
colored using three colors so that no
adjacent vertices share a color. You
could, for example, color 1 and 3
white, 2 and 4 red, and 5 blue.

• In the second graph, every node is
adjacent to all the others, so that each
must have a different color.

• Deciding whether a graph can be
colored with k colors is NP-complete.

Origami Folding
• The diagram at the right shows the
first eight folds on the way to the
creation of a classic origami crane.

• In some of these folds, the crease
rises toward you from the paper.
These are called mountain folds
and appear as dashed lines. In
other folds, the crease moves away
from you. These are called valley
folds and appear as dotted lines.

• In 1996, Marshall Bern and Barry
Hayes proved that deciding whether
a particular pattern of mountain and
valley folds will produce a flat
origami figure is NP-complete.

Minesweeper
• One of the most widely publicized

NP-complete problems is that of
determining whether a particular
pattern of warning counts in the
popular Microsoft Minesweeper
game is consistent.

• In 2000, Richard Kaye published a
paper proving that solving the
minesweeper consistency problem
is NP-complete.

• Because of the popularity of the
game, Kaye’s result was reported in
newspapers throughout the world.

Satisfiability
• The problem that Steven Cook used in his proof is the
Satisfiability Problem (commonly abbreviated as SAT), which
asks whether any assignment of values to the variables of an
expression in predicate logic makes that expression true.

• Expressions in predicate logic consist of individual terms,
each of which can take on the value true or false, connected
by operators, which include Ù (and), Ú (or), and ¬ (not).
Terms appear as lowercase italic letters, such as p, q, r, and s.

• The SAT problem requires that the logical expression be in
conjunctive normal form, in which the expression consists of
individual terms, possibly preceded by ¬ (and usually written
using an overbar instead of the ¬ symbol), and then combined
first by the Ú operator, and finally by the Ù operator. It is
always possible to use the rules of logic to rewrite any
expression in conjunctive normal form.

https://www.youtube.com/watch?v=-wlUDJZb6-Q

https://www.youtube.com/watch?v=-wlUDJZb6-Q

Proving Satisfiability is NP-Complete
• The goal is to show that SAT is NP-complete, which means
that a polynomial time solution to SAT implies a polynomial
time solution to an arbitrary problem in NP.

• If X is an arbitrary problem in NP, that means that there must
be a Turing machine MX that solves X in time bounded by a
polynomial pX.

• The fact that the running time of MX is bounded by pX not
only limits the number of steps MX can execute but also puts
an upper bound on how many tape squares it can reach
because the tape head can move only one square per step.

• If SAT can be solved in polynomial time, it is then possible to
solve X in polynomial time by taking its Turing machine MX,
transforming it into an equivalent SAT problem, and then
using the polynomial-time solution of SAT to find the answer.

Constructing the SAT Expression
Step 1: Start with a Turing machine MX and its polynomial pX.
Step 2: Create a set of logical variables to describe the computation:

Step 3: Encode the Turing machine operation as logical rules that

sk,t indicates that the machine is in state k at time t.
pk,t indicates that the tape head is in position k at time t.
ck,t indicates that the tape square k contains a 1 at time t.

– Encode the initial configuration
– Ensure the machine is in exactly one state.
– Ensure the tape head is in one position.
– Restrict changes to the tape head.
– Encode all transitions of the machine.
– Guarantee that the machine ends in the accept state.

The End

