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Definitions

 The class P consists of all decision problems that can be
solved 1n polynomial time by a deterministic Turing machine.

 The class NP consists of all decision problems that can be
solved in polynomial time by a nondeterministic Turing
machine.

— Adecision problem 1s one that has only a yes-or-no answer.

— Polynomial time 1s a measure of computational complexity that
is bounded by a polynomial.

— A deterministic Turing machine follows only one execution
path at a time.

— A nondeterministic Turing machine can follow multiple paths
in parallel.

* The P=NP question is whether these two classes are the same.



Preview: Computational
Complexity

https://www.youtube.com/watch?v=M
veV2 tGqvw



https://www.youtube.com/watch?v=MyeV2_tGqvw
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Recursion

e One of the most important great ideas in computer science 1s
the concept of recursion, which is the process of solving a
problem by dividing it into smaller subproblems of the same
form. The 1talicized phrase 1s the essential characteristic of
recursion; without 1t, all you have 1s a description of stepwise
refinement of the sort we teach in courses like CS 106A.

« The fact that recursive decomposition generates subproblems
that have the same form as the original problem means that
recursive programs will use the same function or method to
solve subproblems at different levels of the solution. In terms
of the structure of the code, the defining characteristic of
recursion 1s having functions that call themselves, directly or
indirectly, as the decomposition process proceeds.



A Simple Illustration of Recursion

Suppose that you are the national fundraising director for a
charitable organization and need to raise $1,000,000.

One possible approach 1s to find a wealthy donor and ask for
a single $1,000,000 contribution. The problem with that
strategy 1s that individuals with the necessary combination of
means and generosity are difficult to find. Donors are much
more likely to make contributions in the $100 range.

Another strategy would be to ask 10,000 friends for $100
cach. Unfortunately, most of us don’t have 10,000 friends.

Recursion offers a more promising strategy. All you need to
do 1s find ten regional coordinators and ask each one to raise
$100,000. Those regional coordinators in turn delegate the
task to ten local coordinators, each with a goal of $10,000,
and so on until the donations can be raised individually.



A Simple Illustration of Recursion

The following diagram illustrates the recursive strategy for
raising $1,000,000 described on the previous slide:
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A Pseudocode Fundraising Strategy

If you were to implement the fundraising strategy in the form of
a JavaScript function, 1t would look something like this:

function collectContributions (n) {
if (n <= 100) {
Collect the money from a single donor.
} else {
Find 10 volunteers.
Get each volunteer to collect n/10 dollars.
Combine the money raised by the volunteers.

}

What makes this strategy recursive is that the line
Get each volunteer to collect n/10 dollars.
will be implemented using the following recursive call:

collectContributions(n / 10);



A Recursive View of Mazes

* Solving a maze algorithmically 1s
simplest 1f you use recursion, but
coding that solution requires you to

find the right recursive nsight.

e (Consider the maze shown at the ®

right. How can Theseus transform

the problem into one of solving a
simpler maze?

* The insight you need 1s that a maze ‘
1s solvable only 1f it 1s possible to
solve one of the simpler mazes that
results from shifting the starting
location to an adjacent square and
taking the current square out of the
maze completely.



A Recursive View of Mazes

* Thus, the original maze 1s solvable
only 1f one of the three mazes at
the bottom of this slide 1s solvable.

 Each of these mazes 1s “simpler”
because 1t contains fewer squares. ®

e The simple cases are:

— Theseus 1s outside the maze
— There are no directions left to try ‘




Recursion and Backtracking

« The complete recursive solution operates as follows:
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Exponential Backtracking

 The time required for the standard backtracking algorithm
grows exponentially if there are large open areas in the maze:

+
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 This exponential behavior 1s not fundamental to the maze
algorithm. If the program doesn’t unmark the squares as it
backtracks, the program can find the exit in linear time.



Exploiting Nondeterminism

* Another approach to solving a maze i1s to explore all paths
concurrently as you proceed. This strategy 1s analogous to
cloning yourself at each intersection and sending one clone
down each path.
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 [s this parallel strategy more efficient in the general case?



Nondeterministic Turing Machines

* As with the nondeterministic maze solver, a nondeterministic
Turing machine can explore more than one solution strategy
at once.

* In 1ts most common formulation, a nondeterministic Turing
machine 1s defined by allowing each instruction to transition
to several new states. In effect, these multiple transitions
clone the machine, with each of the clones continuing in a
different state.

o [t 1s conventional to define two new states: accept and reject.
A nondeterministic Turing Machine accepts its imput if any of
its cloned copies ever reaches the accept state.



Relationship between P and NP




NP-Complete Problems

The search for an answer to the P=NP
question depends on the notion of
NP-complete problems, which was
introduced by Stephen Cook in 1971. In
an 1nformal sense, a problem 1is
NP-complete if 1t 1s provably as difficult
to solve as any other problem in NP.

The 1mmediate 1mplication of this
definition 1s that if some NP-complete
problem can be solved in polynomial
time, then all problems in NP can be
solved 1n polynomial time.
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Stephen Cook (1939-)

In practice, one establishes that a problem is NP-complete by
showing that the computation of any nondeterministic Turing

machine can be expressed in that domain.

https://www.youtube.com/watch?v=0Y410QYPI8cw



https://www.youtube.com/watch?v=OY41QYPI8cw
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Euler’s Representation of the Bridges

 Leonhard Euler (1707-1783) represented the Konigsberg
bridge problem using a mutigraph, which allows vertices to
be connected by multiple edges:

C

 An Eulerian cycle 1s a path that traverses every edge of the
graph exactly once and returns to its starting point.



Euler’s Theorem

* A connected multigraph has an Eulerian cycle if and only 1f
the degree of each vertex 1s even.

e Euler’s graph of the bridges of Konigsberg therefore has no
Eulerian cycle because the degree of every vertex 1s odd:

3
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» Euler’s theorem provides a necessary and sufficient condition.



Hamiltonian Cycles

* A Hamiltonian cycle 1s one that passes through every vertex
of the graph exactly once.

* Suppose that G is the following graph:
2

» Can you find a cycle that contains all the vertices in G?



The Petersen Graph

e The Danish mathematician Julius Petersen (1839—1910) proved
in 1898 that the following graph is not Hamiltonian:

8




Ore’s Theorem

* Norwegian mathematician Qystein Ore (1899-1968) proved
that a graph G is Hamiltonian if for all non-adjacent pairs of
vertices x and y, their degree sum is at least the order of G.

 The English physicist Paul Dirac (1902-1984) used Ore’s
theorem to prove that a graph G is Hamiltonian if the degree
of each of the N vertices is at least N /2.

« Each of these theorem’s provides a sufficient condition for a
Hamiltonian graph, but not a necessary one. Any simple
cycle 1s a Hamiltonian graph even though it fails these tests:




Recognizing Hamiltonian Graphs Is Hard

« As far as we know, there 1s no simple test to determine
whether a graph 1s Hamiltonian.

 In fact, all known algorithms for determining whether a graph
1s Hamiltonian take exponential time.

 The Hamiltonian graph problem 1s an NP-complete problem.
If the Hamiltonian graph problem has a polynomial time
solution, then every problem in NP has a polynomial time
solution.



Traveling Salesman Problem

One of the classic NP-complete problems, which is closely related to the
Hamiltonian cycle problem, is the Traveling Salesman Problem (often
designated as TSP for short), which asks, Given a list of cities and the
distances between each pair of cities, what is the shortest possible route

that visits each city and returns to the origin city?
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The Subset-Sum Problem

Suppose that you have a set of integers called S. The subset-
sum problem asks whether there 1s a subset of the elements of
S that add up to a particular target value .

For example, if S 1s the set { -3, 5, 7, 10 }, the subset-sum
problem when ¢ 1s 12 returns the answer true because the
elements in the subset { —3, 5, 10 } add up to 12. By contrast,
if r were 11, the answer 1s false because i1t 1s impossible to
choose a subset of S whose values adds up to 11.

In his early study of NP-complete problems in 1972, Richard
Karp proved that the subset-sum problem 1s NP-complete,
although his original papers refer to the problem by a
different name.

As you will see next week, the subset-sum problem plays a
role 1in the development of public-key cryptography.



The Knapsack Problem

 The knapsack problem, which dates back to 1897, asks the
following question: Given a set of i1tems, each with a weight
and a value, determine the number of each 1tem to include 1in a
collection so that you keep the total weight under given limit
and maximize the total value.

* Although the knapsack problem 1s NP-complete, there are
efficient strategies that often provide good answers. Such
strategies are called heuristics and cannot guarantee the best
possible result.



NP-Complete Problems
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Graph Coloring

Suppose that you have a graph
consisting of a set of vertices
connected by a set of edges, such as
the one shown on the right.

The vertices of this graph can be
colored using three colors so that no
adjacent vertices share a color. You
could, for example, color 1 and 3

white, 2 and 4 red, and 5 blue.

In the second graph, every node 1is
adjacent to all the others, so that each
must have a different color.

Deciding whether a graph can be
colored with k& colors 1s NP-complete.




Origami1 Folding

* The diagram at the right shows the N\
first eight folds on the way to the
creation of a classic origami crane.

 In some of these folds, the crease /
rises toward you from the paper. \
These are called mountain folds

and appear as dashed lines. In [:N\0- ;
other folds, the crease moves away | % ™\ ’
from you. These are called valley NN N
folds and appear as dotted lines. YN N

* In 1996, Marshall Bern and Barry SN
Hayes proved that deciding whether AN N N
a particular pattern of mountain and | / . N
valley folds will produce a flat |/ .7 | -

origami figure 1s NP-complete. “



Minesweeper

* One of the most widely publicized
NP-complete problems i1s that of
determining whether a particular
pattern of warning counts in the
popular Microsoft Minesweeper
game 1s consistent.

e In 2000, Richard Kaye published a
paper proving that solving the
minesweeper consistency problem
1s NP-complete.

 Because of the popularity of the
game, Kaye’s result was reported in
newspapers throughout the world.



Satisfiability

 The problem that Steven Cook used in his proof is the
Satisfiability Problem (commonly abbreviated as SAT), which
asks whether any assignment of values to the variables of an
expression 1n predicate logic makes that expression true.

« Expressions in predicate logic consist of individual terms,
each of which can take on the value true or false, connected
by operators, which include A (and), v (or), and — (not).
Terms appear as lowercase italic letters, such as p, g, 7, and s.

 The SAT problem requires that the logical expression be in
conjunctive normal form, in which the expression consists of
individual terms, possibly preceded by — (and usually written
using an overbar instead of the — symbol), and then combined
first by the v operator, and finally by the A operator. It 1s
always possible to use the rules of logic to rewrite any

expression in conjunctive normal form.
https:// www.youtube.com/watch?v=-wlUDJZb6-Q



https://www.youtube.com/watch?v=-wlUDJZb6-Q

Proving Satisfiability 1s NP-Complete

* The goal 1s to show that SAT i1s NP-complete, which means
that a polynomial time solution to SAT 1mplies a polynomial
time solution to an arbitrary problem in NP.

* If X1s an arbitrary problem in NP, that means that there must
be a Turing machine My that solves X in time bounded by a
polynomial py.

 The fact that the running time of My 1s bounded by py not
only limits the number of steps My can execute but also puts
an upper bound on how many tape squares i1t can reach
because the tape head can move only one square per step.

* [If SAT can be solved in polynomial time, it 1s then possible to
solve X in polynomial time by taking its Turing machine My,
transforming it into an equivalent SAT problem, and then
using the polynomial-time solution of SAT to find the answer.



Constructing the SAT Expression

Step 1. Start with a Turing machine My and its polynomial py.

Step 2: Create a set of logical variables to describe the computation:

sx: Indicates that the machine is in state & at time ¢.
pr: Indicates that the tape head is in position £ at time ¢.
cx, indicates that the tape square k contains a 1 at time +.

Step 3: Encode the Turing machine operation as logical rules that

Encode the initial configuration

Ensure the machine 1s in exactly one state.

Ensure the tape head 1s in one position.

Restrict changes to the tape head.

Encode all transitions of the machine.

Guarantee that the machine ends in the accept state.



The End



