CS 208e
Reflections on [rusting lrust

Thursday, November 11th, 2021
Chris Gregg

reading:
https://www.archive.ece.cmu.edu/~ganger//12.fall02/
papers/p761-thompson.pdf

compiie(s)
Char «3;
!
f(match(s. “pattem17)) |
compule ("bug1”)
retum,;

l

#{match(s, "pattem 2) |
compile ("bug 2°);
retum;

.



https://www.archive.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
https://www.archive.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

Ken [ hompson

Ken Thompson is the creator of the Unix
operating system, and a number of notable
programming languages, including B, the
predecessor to C, and of Go while at Google
(where he still works).

Most of his career was spent at Bell Lalbs, where
he worked on Unix, and also made notable
contributions to regular expression parsing, and
the definition of the UTF-8 encoding scheme.
He is a Turing award winner (1983, along with
Dennis Ritchie), and this lecture will focus on his
acceptance speech for that award, which Is
considered a seminal computer security paper.




Reflections on Trusting Trust - Stage |

‘[ am a programmer. On my 1040 form, that is what | put down as my occupation. As
a programmer, | write programs. | would like to present to you the cutest program |
ever wrote. | will do this In three stages and try to bring it together at the end.”

“In college, before video games, we would amuse ourselves by posing programming
exercises. One of the favorites was to write the shortest self-reproducing program.
Since this is an exercise divorced from reality, the usual vehicle was FORTRAN.
Actually, FORTRAN was the language of choice for the same reason that three-legged

races are popular.”

“More precisely stated, the problem iIs to write a source program that, when compiled
and executed, will produce as output an exact copy of its source.”

f you have never done this, | urge you to try it on your own. The discovery of how to i N

do it is a revelation that far surpasses any benefit obtained by being told how to do it:f

‘‘‘‘‘
000000



Quines

Thomson is talking about a quine, https://en.wikipedia.org/wiki/Quine (computing)

From the Wikipedia article:

A quine IS a non-empty computer program which takes no input and
produces a copy of its own source code as its only output. The
standard terms for these programs in the computability theory and
computer science literature are "selt-replicating programs”, "selt-
reproducing programs”, and "self-copying programs”.

The name "quine” was coined by Douglas Hofstadter, in his popular science book
Godel, Escher, Bach: An Eternal Golden Braid

Let's take a few minutes to try and write a quine! Use whatever language you want,
and just jot down some code — your brain will stretch a bit from the exercise. '



https://en.wikipedia.org/wiki/Quine_(computing)
https://en.wikipedia.org/wiki/Douglas_Hofstadter
https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach:_An_Eternal_Golden_Braid

Chris’s Mediocre Attempt

#!/usr/bin/env python

newline=chr(10)

quote=chr(39)

eg=chr(61)

a='#!/usr/bin/env python'

b="newline=chr(10)"

c="'quote=chr(39)'

d="eg=chr(61)"
e="print(atnewline+newline+b+newline+c+newline+d+newline+chr (97)+e
gtquote+atquote+newline+chr (98)+eg+quotet+b+quote+newline+chr(99)+e
gtqguote+c+gquote+newline+chr (100)+eg+quote+d+quote+newline+chr(101)
+egtquotetet+quotet+newline+e)’

print (atnewlinet+newlinetb+newline+c+newlinet+d+newline+chr (97)+eg+qg
uotetatquotet+newline+chr(98)+egt+tquotet+b+quote+newline+chr(99)+eg+qg
uotet+c+quotet+newline+chr(100)+egtquotet+d+quotet+newline+chr(101)+eq
+quotet+etquotetnewline+e)




A Very Concise Python Quine

sr\nprint(s$%
print (s%s)

S python conciseQuine.py | python | python | python
3r\nprint(s%%s)’
print(s%s)




Ouroboros Quines and Multiquines

An Ouroboros quine, also known as a quine-relay, is a quine that is written in one

language, outputs a program in another language, which, when run, outputs the original

orogram In the original language.

This can be extended to multiple levels of recursion. See the
code.

From Wikjipedia:

example from the lecture

David Madore, creator of Unlambda, describes multiquines as follows:

"A multiquine is a set of r different programs (in r different languages — without

this condition we could take them all equal to a single quine), each of which |
able to print any of the r programs (including itself) according to the commar

iNne argument it is passed. (Note that cheating is not al

INne arguments must not be too long — passing the ful
considered cheating)."

owed: the command
text of a program Is




An Astounding Ouroboros Quine

https://github.com/mame/quine-relay

ajuy
dsy
dsv

++910°
109

¢

ALGOL 68



https://github.com/mame/quine-relay

Reflections on Trusting Trust - Stage |

“The C compiler is written in C. What | am about to describe is one of many "chicken
and egg” problems that arise when compilers are written in their own language. In this
ease, | will use a specific example from the C compller.

“C allows a string construct to specify an initialized character array. The individual
characters in the string can be escaped to represent unprintable characters. For

example,

"Hello world\n"

represents a string with the character "\n," representing the new line character.”




Reflections on Trusting Trust - Stage |

¢ = next( ) "Figure 2 is an idealization of the code in the C

iffc 1= "\\) compiler that interprets the character escape

. m?q“’;f‘(c)i sequence. This is an amazing piece of code. It

Hc == .\\,') "knows" In a completely portable way what
retum(’\\"); character code is compiled for a new line in any

H(C == 'n’) character set. The act of knowing then allows it to
retumy("\n"); recompile itself, thus perpetuating the knowledge.”

Figure 2




Reflections on Trusting Trust - Stage |

“Suppose we wish to alter the C compiler to

include the sequence "\v" to represent the vertical

tab character. The extension to Figure 2 Is obvious

and Is presented In Figure 3. We then recompille

the C compiller, but we get a diagnostic. Obviously,

since the binary version of the compiler does not

know about "\v," the source is not legal C. We

must "train” the compiller. After it "knows" what

\v" means, then our new change will become

legal C. We look up on an ASCII chart that a

vertical tab is decimal 11. We alter our source to

look like Figure 4. Now the old compiler accepts

the new source. We install the resulting binary as

the new official C compiler and now we can write &,
the portable version the way we had it in Figure 3.” (1.2 |

Figure 3

‘‘‘‘‘
000000



Reflections on Trusting Trust - Stage |

c = next( )
ific '= "\\")
retumy{c),

C = next )

f(c == "\\")
returm{"\\');

Hc == "n’)
return{"'\ n’);

e == "y’)
returm{11);

Figure 4

“This Is a deep concept. It is as close to a
learning” program as | have seen. You simply tell
t once, then you can use this self-referencing
definition.”




Reflections on Trusting Trust - Stage |l

if{(match(s, “pattem”)) |
compile{"bug”);
retum;

Figure 6

“‘Again, in the C compiler, Figure 5 represents the
high-level control of the C compiler where the
routine "compile” Is called to compile the next line
of source. Figure 6 shows a simple modification to
the compiler that will deliberately miscompile
source whenever a particular pattern is matched. If
this were not deliberate, 1t would be called a
compiler "bug." Since it is deliberate, it should be
called a "ITrojan horse.” ”




Reflections on Trusting Trust - Stage |l

“The actual bug | planted in the compiler would match code Iin the UNIX “login®
command. The replacement code would miscompile the login command so
that it would accept either the intended encrypted password or a particular
known password. Thus If this code were installed in binary and the binary were
used to compile the login command, | could log Into that system as any user.

Such blatant code would not go undetected for long. Even the most casual
perusal of the source of the C compiler would raise suspicions.”

This Is a critical point: finding this Trojan Horse would be easy at this point —
just look at the source code of the compiler, and there it Is!




Reflections on Trusting Trust - Stage |l

compiie(s)
Char «3;

!
f(match(s, “pattem17)) |
compie ("dug1”)
retum;
l

d{match(s, “pattem 27) |
compie ("bug 27;
retum;

Figure 7

“The final step Is represented In Figure 7. This
simply adds a second Trojan horse to the one
that already exists. The second pattern is
aimed at the C compiler. The replacement
code Is a Stage | self-reproducing program
that inserts both Trojan horses into the
compiler. This requires a learning phase as in
the Stage Il example. First we compile the
modified source with the normal C compiler to
produce a bugged binary. We install this binary
as the official C. We can now remove the bugs
from the source of the compiler and the new
binary will reinsert the bugs whenever It IS
compiled. Of course, the login command will
remain bugged with no trace in source
anywhere. ”




Reflections on lrusting lrust - Moral

The moral is obvious. You can't trust code that you did not totally create yourself.

(Especially code from companies tha

source-level verification or scrutiny wi

- employ people like me.) No amount of

| protect you from using untrusted code. In

demonstrating the possibility of this kind of attack, | picked on the C compiler. |
could have picked on any program-handling program such as an assembler, a
loader, or even hardware microcode. As the level of program gets lower, these bugs
will be harder and harder to detect. A well installed microcode bug will be almost

impossible to detect.




Countering “Trusting Trust”

https://www.schneier.com/blog/archives/2006/01/countering trus.html

“Whee

er explains how to defeat this more robust attac

K. SUPPOSse we have two completely

iIndependent compilers: A and 1. More specifically, we have source code SA of compiler A, and

executable code
trusting trust attack.
ere's Wheeler's trick;

Step 1: Compile SA wit
Step 2: Compile SA wit
Since X and Y were generated by two different compilers, they should have different binary code but
be functionally equivalent. So far, so good. Now:

Step 3: Compile SA wit
Step 4: Compile SA wit

Y wi
diffe

Since X and Y are functionally equivale
And that's how to detect the attack. If
| be functionally different. And if Xand Y a

—A and

— 1. We want to determr

N EA, yielding new executable X.
N ET, yielding new executable Y.

N X, yielding new executable V.

N Y, yielding new executable W.

nt, V and W shou

—A IS IN

‘ected with t

e functional

ne robust o

y different, t

rent. So all you have to do is to run a binary compare between V a
CA IS Infected.”

ne if the binary of compiler A -- EA -- contains this

d be bit-for-bit equivalent.

'm of the attack, then X and
nen V and W will be bitwise

>oe
""""""
- A

| ] " I " \J
nd Wi If they're different, then zZemes,
o5 2 “\N
¢ < 3 ) 'sf,."“b\- = ¢

‘‘‘‘‘
000000


https://www.schneier.com/blog/archives/2006/01/countering_trus.html

The Ken Thompson Hack in the Real World

https://hakedsecurity.sophos.com/2009/08/18/compileavirus/



https://nakedsecurity.sophos.com/2009/08/18/compileavirus/

References and Advanced Reading

*References:
ehttps://www.archive.ece.cmu.edu/~ganger/712.tall02/papers/p /61 -thompson.pdf
ehttp://wiki.c2.com/?TheKenThompsonHack
ehttps:// www.win.tue.nl/~aeb/linux/hh/thompson/trust.ntml
ehttps://en.wikiquote.org/wiki/Ken Thompson
ehttps://en.wikipedia.org/wiki/Quine (computing)
ehttps://qgithub.com/mame/quine-relay
ehitps://www.schneier.com/blog/archives/2006/01/countering trus.html

*Advanced Reading:
ehttps://softwareengineering.stackexchange.com/questions/184874/is-ken-
thompsons-compiler-hack-still-a-threat
eNttp:// www.madore.org/~david/computers/quine.html
ehttps://nolancaudill.com/how-to-build-a-quine-eb /1 7bfo /11
eNttp://www.computerhistory.org/fellowawards/hall/ken-thompson/
ehttps:// www.youtube.com/watch?v=tc4ROCJYbmO
ehttps://www.youtube.com/watch?v=JdoVQTPbD6UY



https://www.archive.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
http://wiki.c2.com/?TheKenThompsonHack
https://www.win.tue.nl/~aeb/linux/hh/thompson/trust.html
https://en.wikiquote.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Quine_(computing)
https://github.com/mame/quine-relay
https://www.schneier.com/blog/archives/2006/01/countering_trus.html
https://softwareengineering.stackexchange.com/questions/184874/is-ken-thompsons-compiler-hack-still-a-threat
https://softwareengineering.stackexchange.com/questions/184874/is-ken-thompsons-compiler-hack-still-a-threat
http://www.madore.org/~david/computers/quine.html
https://nolancaudill.com/how-to-build-a-quine-eb717bfb7f1f
http://www.computerhistory.org/fellowawards/hall/ken-thompson/
https://www.youtube.com/watch?v=tc4ROCJYbm0
https://www.youtube.com/watch?v=JoVQTPbD6UY

