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I hope you guys enjoyed the last few guest lectures. Now we need to get back to doing some real 
work. Because of the guest lectures, we haven’t been able to get to some important concepts that 
a lot of people seem to be confused about. I want to go over them in details just to make sure 
everyone is on the same page. A lot of what is written below is taken from TensorFlow 
documentation. 
 
Queues and Coordinators 
We briefly mentioned queues but never discussed them in details. In TensorFlow 
documentation, queues are described as “important TensorFlow objects for computing tensors 
asynchronously in a graph.”  
 
If you’ve done any project in deep learning, you probably don’t need me to convince you why you 
need asynchronous programming. In input pipeline, multiple threats can help us reduce the 
bottleneck at the reading in data phase because reading in data is a lot of waiting. For example, 
in using queues to prepare inputs for training a model, we have: 

● Multiple threads prepare training examples and push them in the queue. 
● A training thread executes a training op that dequeues mini-batches from the queue. 

 
The TensorFlow Session object is designed multithreaded, so multiple threads can easily use the 
same session and run ops in parallel. However, it is not always easy to implement a Python 
program that drives threads as described above. All threads must be able to stop together, 
exceptions must be caught and reported, and queues must be properly closed when stopping. 
 
The documentation made it sound like threading is optional in running a queue, but actually 
without threading, it’s very likely that your queue will run into a gridlock (one op waits for 
another) and crash your program. Fortunately, TensorFlow provides two classes to help with the 
threading: ​tf.Coordinator​ and ​tf.train.QueueRunner​. These two classes are designed to be 
used together. The Coordinator class helps multiple threads stop together and report exceptions 
to a program that waits for them to stop. The QueueRunner class is used to create a number of 
threads cooperating to enqueue tensors in the same queue. 
 
There are two main queue classes, tf.FIFOQueue and tf.RandomShuffleQueue. FIFOQueue 
creates a queue the dequeues elements in a first in first out order, while RandomShuffleQueue 
dequeues elements in, well, a random order. These two queues support the enqueue, 
enqueue_many, and dequeue (which do exactly what they sound). A common practice is that 
you enqueue many examples in when you read your data, but dequeue them one by one. 
dequeue_many is not allowed. If you want to get multiple elements at once for your batch 
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training, you’ll have to use tf.train.batch or tf.train.shuffle_batch if you want to your batch to be 
shuffled.  
 

 

There is also tf.PaddingFIFOQueue which is a FIFOQueue that supports batching variable-sized 
tensors by padding. Sometimes you need to feed variable size batches in, for example, in 
sequence to sequence models for natural language processing, a lot of time you want each 
sentence to be a batch, but sentences don’t have equal lengths. A PaddingFIFOQueue may 
contain components with dynamic shape, while also supporting dequeue_many. There is also 
the CS106-favorite tf.PriorityQueue, which is a FIFOQueue whose enqueues and dequeues take 
in another argument: the priority. 
 
I don’t know the exactly reason why dequeue_many is allowed in PaddingFIFOQueue but not in 
other queues. My wild guess through reading the reported issues on TensorFlow GitHub 
repository is that dequeue_many used to be supported in FIFOQueue and 
RandomShuffleQueue, but then people ran into a lot of problems with it, so TensorFlow just 
disallowed it. 
 
You can create your queue independently with parameters such that min_after_dequeue (the 
minimum number of elements in the queue after you’ve dequeued), bounded capacity (the 
maximum elements in the queue at a time), shape of the elements in the queue (if shape is None 
then elements can be of any shape).  However, in practice, you rarely use a queue by itself, but 
always with string_input_producer, so we’ll go over this section briefly. We’ll go cover 
string_input_producer in more details in a little bit. 
 

tf​.​RandomShuffleQueue​(​capacity​,​ min_after_dequeue​,​ dtypes​,​ shapes​=​None​,​ names​=​None​, 
seed​=​None​,​ shared_name​=​None​,​ name​=​'random_shuffle_queue') 

 
An example is as below. You can see it on the GitHub repo under the name 
09_queue_example.py 



 

N_SAMPLES ​=​ ​1000 
NUM_THREADS ​=​ 4 
# Generating some simple data 
# create 1000 random samples, each is a 1D array from the normal distribution (10, 1) 
data ​=​ ​10​ ​*​ np​.​random​.​randn​(​N_SAMPLES​,​ ​4​)​ ​+​ ​1  
# create 1000 random labels of 0 and 1 
target ​=​ np​.​random​.​randint​(​0​,​ ​2​,​ size​=​N_SAMPLES​)  
 
queue ​=​ tf​.​FIFOQueue​(​capacity​=​50​,​ dtypes​=[​tf​.​float32​,​ tf​.​int32​],​ shapes​=[[​4​],​ ​[]]) 
 
enqueue_op ​=​ queue​.​enqueue_many​([​data​,​ target​]) 
dequeue_op ​=​ queue​.​dequeue​() 
 
# create NUM_THREADS to do enqueue 
qr ​=​ tf​.​train​.​QueueRunner​(​queue​,​ ​[​enqueue_op​]​ ​*​ NUM_THREADS) 
with​ tf​.​Session​()​ ​as​ sess: 

# Create a coordinator, launch the queue runner threads. 
coord ​=​ tf​.​train​.​Coordinator​() 
enqueue_threads ​=​ qr​.​create_threads​(​sess​,​ coord​=​coord​,​ start​=​True) 
for​ step ​in​ xrange​(​100​):​ ​# do to 100 iterations 

if​ coord​.​should_stop​(): 
break 

data_batch​,​ label_batch ​=​ sess​.​run​(​dequeue_op) 
coord​.​request_stop​() 
coord​.​join​(​enqueue_threads) 

 
You also don’t need to use tf.Coordinator with TensorFlow queues, but can use it to manage 
threads of any thread you create. For example, you use the Python package threading to create 
threads to do some crazy job, you can still use tf.Coordinator to manage these threads too. The 
syntax of target and args are similar to the classic threadpool. For more details on threading, you 
should take CS 110. The example below is from TensorFlow documentation. 
 

import threading 
 
# thread body: loop until the coordinator indicates a stop was requested. 
# if some condition becomes true, ask the coordinator to stop. 
 
def​ my_loop​(​coord​): 

while​ ​not​ coord​.​should_stop​(): 
...​do​ something​... 

 if​ ​...​some condition​...: 
 coord​.​request_stop​() 
 
# main code: create a coordinator. 
coord ​=​ tf​.​Coordinator​() 
 
# create 10 threads that run 'my_loop()' 
# you can also create threads using QueueRunner as the example above 
threads ​=​ ​[​threading​.​Thread​(​target​=​my_loop​,​ args​=(​coord​,))​ ​for​ _ ​in​ xrange​(​10​)] 
 
# start the threads and wait for all of them to stop. 
for​ t ​in​ threads​:  

t​.​start​() 
coord​.​join​(​threads) 



 
Data Readers 
We went over data readers in lecture 5, and some students tried to implement it for assignment 
1 but none got it to work. Data readers are a bit tricky to use, and the ambiguous documentation 
doesn’t really help.  
 
We’ve learned that there are 3 different ways to read in data for your TensorFlow. The first is 
through constants (which will seriously bloat your graph -- which you’ll see in assignment 2). 
The second is through feed dict which has the drawback of first loading the data from storage to 
the client and then from the client to workers, which can be slow especially when the client and 
workers are on different machines. A common practice is to use data readers to load your data 
directly from storage to workers. In theory, this means that you can load in an amount of data 
limited only by your storage and not your device.  
 
There are several built-in readers for several common data types. The most versatile one is 
TextLineReader, which will read in any file delimited by newlines and will just return a line in 
that with each call. There are also a reader to read in files of fixed length, a reader to read in 
entire files, and a reader to read in the file of the type TFRecord (which we will go into below).  
 

tf​.​TextLineReader 
Outputs​ the lines of a file delimited ​by​ newlines 
E​.​g​.​ text files​,​ CSV files 
 
tf​.​FixedLengthRecordReader 
Outputs​ the entire file ​when​ all files have same ​fixed​ lengths 
E​.​g​.​ each MNIST file has ​28​ x ​28​ pixels​,​ CIFAR​-​10​ ​32​ x ​32​ x 3 
  
tf​.​WholeFileReader 
Outputs​ the entire file content. This is useful when each file contains a sample 
 
tf​.​TFRecordReader 
Reads​ samples ​from​ ​TensorFlow​'​s own binary format ​(​TFRecord) 
 
tf​.​ReaderBase 
Allows​ you to create your own readers 

 
To use data reader, we first need to create a queue to hold the names of all the files you want to 
read in through tf.train.string_input_producer. 
 

filename_queue ​=​ tf​.​train​.​string_input_producer​([​"heart.csv"​])  
reader ​=​ tf​.​TextLineReader​(skip_header_lines=1)  
# it means you choose to skip the first line for every file in the queue 

My friend encouraged me to think of readers as ops that return a different value every time you 
call it -- similar to Python generators. So when you call reader.read(), it’ll return you a pair key, 
value, in which key is a key to identify the file and record (useful for debugging if you have some 
weird records), and a scalar string value. 
 



key​,​ value ​=​ reader​.​read​(​filename_queue) 

 
For each example, the call to read() above might return: 
 

key​ ​=​ data​/​heart​.​csv​:2 
value​ ​=​ ​144​,​0.01​,​4.41​,​28.61​,​Absent​,​55​,​28.87​,​2.06​,​63​,1 

  
Where the value “​144​,​0.01​,​4.41​,​28.61​,​Absent​,​55​,​28.87​,​2.06​,​63​,1” ​is the second line (excluding 
the header line) in the file heart.csv. 
 
tf.train.string_input_producer creates a FIFOQueue under the hood, so to run the queue, we’ll 
need tf.Coordinator and tf.QueueRunner. 
 

filename_queue ​=​ tf​.​train​.​string_input_producer​(​filenames) 
reader ​=​ tf​.​TextLineReader​(​skip_header_lines​=​1​)​ ​# skip the first line in the file 
key​,​ value ​=​ reader​.​read​(​filename_queue) 
 
with​ tf​.​Session​()​ ​as​ sess: 
        coord ​=​ tf​.​train​.​Coordinator​() 
        threads ​=​ tf​.​train​.​start_queue_runners​(​coord​=​coord) 
        ​print​ sess​.​run​(​key) # data​/​heart​.​csv​:2 
        ​print​ sess​.​run​(​value) # ​144​,​0.01​,​4.41​,​28.61​,​Absent​,​55​,​28.87​,​2.06​,​63​,1 
        coord​.​request_stop​() 
        coord​.​join​(​threads) 

 
The value returned is just a string tensor. If all you want is a string to feed into your model, 
that’s fine. But the majority of the time,  you’d want to convert the string into a vector 
representation of features. For example, our heart.csv file has 10 columns, the first 9 columns 
correspond to 9 features, and the last corresponds to label (0/1). To do so, we need to use 
TensorFlow CSV decoder. 
 

content ​=​ tf​.​decode_csv​(​value​,​ record_defaults​=​record_defaults​)  

 
The line of code above will parse value into the tensor record defaults which we have to create 
ourselves. The record defaults serve two purposes:  

● First, it tells the decoder what types of data to expect in each column.  
● Second, if a space in a column happens to be empty, it’ll fill in that space with the default 

value of the data type that we specify. 
For the record_defaults of this specific dataset, we’d like it to have 10 elements. All elements are 
either integers or floats, except for the fifth element that is a string. To make it easier, we assume 
that all feature integers are floats (we’ll still specify the 10th column to be integer, because we 
like our labels to be integer). 
 

record_defaults ​=​ ​[[​1.0​]​ ​for​ _ ​in​ range​(​N_FEATURES​)] # define all features to be floats 



record_defaults​[​4​]​ ​=​ ​[​''] # make the fifth feature string 
record_defaults​.​append​([​1​]) 
content ​=​ tf​.​decode_csv​(​value​,​ record_defaults​=​record_defaults​)  

 
You can also do all the kind of pre-processing you need for your data before feeding it in. For 
example, now we have our content is a list of 10 elements, 8 are floats, 1 is string, and 1 is 
integer. We’ll have to convert the string to float (Absent as 0 and Present as 1), and then convert 
the first 9 features into a tensor that can be fed into the model. 
 

# convert the 5th column (present/absent) to the binary value 0 and 1 
condition ​=​ tf​.​equal​(​content​[​4​],​ tf​.​constant​(​'Present'​)) 
content​[​4​]​ ​=​ tf​.​select​(​condition​,​ tf​.​constant​(​1.0​),​ tf​.​constant​(​0.0​)) 
 
# pack all 9 features into a tensor 
features ​=​ tf​.​pack​(​content​[:​N_FEATURES​]) 
 
# assign the last column to label 
label ​=​ content​[-​1] 

 
With that, every time the reader reads in a line from our CSV file, it’ll convert that line into a 
feature tensor and a label! 
 
But we often don’t want to feed in a single sample into our model, but instead, we would want to 
batch ‘em up. You can do so using tf.train.batch, or tf.train.shuffle_batch if you want to shuffle 
your batches. 
 

# minimum number elements in the queue after a dequeue, used to ensure  
# that the samples are sufficiently mixed 
# I think 10 times the BATCH_SIZE is sufficient 
min_after_dequeue ​=​ ​10​ ​*​ BATCH_SIZE 
 
# the maximum number of elements in the queue 
capacity ​=​ ​20​ ​*​ BATCH_SIZE 
 
# shuffle the data to generate BATCH_SIZE sample pairs 
data_batch​,​ label_batch ​=​ tf​.​train​.​shuffle_batch​([​features​,​ label​],​ batch_size​=​BATCH_SIZE​,  
                                    capacity​=​capacity​,​ min_after_dequeue​=​min_after_dequeue) 

 
And with that we’re done. You can simply use data_batch and label_batch the way you would 
have used input_placeholder and label_placeholder in our previous model, except you don’t 
need to feed them in through the feed_dict parameters. The full code can be accessed on the 
GitHub repo under the name 05_csv_reader.py 
 
TFRecord 
Binary files are extremely useful, though I have met a lot of people who are somehow shy away 
from them because they think binary files are cumbersome. If you’re one of those people, I hope 
that through this lecture will help you overcome your irrational fear of binary files. They make 



better use of disk cache. They are faster to move around. They can store data of different types 
(so you can put both images and labels in one place). 
 
Like many machine learning frameworks, TensorFlow has its own binary data format which is 
called TFRecord. A TFRecord is a serialized tf.train.Example Protobuf object. They can be 
created in a few lines of code. Below is an example to convert an image into a TFRecord. 
 
First, we need to read in the image and convert it to byte string. 
 

def​ get_image_binary​(​filename​): 
    image ​=​ ​Image​.​open​(​filename) 
    image ​=​ np​.​asarray​(​image​,​ np​.​uint8) 
    shape ​=​ np​.​array​(​image​.​shape​,​ np​.​int32) 
    ​return​ shape​.​tobytes​(),​ image​.​tobytes​()​ ​# convert image to raw data bytes in the array. 

 
Next, you write these byte strings into a TFRecord file using tf.python_io.TFRecordWriter and 
tf.train.Features. You need the shape information so you can reconstruct the image from the 
binary format later. 
 

def​ write_to_tfrecord​(​label​,​ shape​,​ binary_image​,​ tfrecord_file​): 
    ​""" This example is to write a sample to TFRecord file. If you want to write 
    more samples​,​ just ​use​ a loop. 
    ​""" 
    writer ​=​ tf​.​python_io​.​TFRecordWriter​(​tfrecord_file) 
    ​# write label, shape, and image content to the TFRecord file 
    example ​=​ tf​.​train​.​Example​(​features​=​tf​.​train​.​Features​(​feature​={ 
                ​'label'​:​ tf​.​train​.​Feature​(​bytes_list​=​tf​.​train​.​BytesList​(​value​=[​label​])), 
                ​'shape'​:​ tf​.​train​.​Feature​(​bytes_list​=​tf​.​train​.​BytesList​(​value​=[​shape​])), 
                ​'image'​:​tf​.​train​.​Feature​(​bytes_list​=​tf​.​train​.​BytesList​( 
                                                                 value​=[​binary_image​])) 
                ​})) 
    writer​.​write​(​example​.​SerializeToString​()) 
    writer​.​close​() 

 
To read a TFRecord file, you use TFRecordReader and tf.decode_raw.  

def​ read_from_tfrecord​(​filenames​): 
    tfrecord_file_queue ​=​ tf​.​train​.​string_input_producer​(​filenames​,​ name​=​'queue'​) 
    reader ​=​ tf​.​TFRecordReader​() 
    _​,​ tfrecord_serialized ​=​ reader​.​read​(​tfrecord_file_queue​) 
 
    ​# label and image are stored as bytes but could be stored as  
    ​# int64 or float64 values in a serialized tf.Example protobuf. 
    tfrecord_features ​=​ tf​.​parse_single_example​(​tfrecord_serialized​, 
                        features​={ 
                            ​'label'​:​ tf​.​FixedLenFeature​([],​ tf​.​string​), 
                            ​'shape'​:​ tf​.​FixedLenFeature​([],​ tf​.​string​), 
                            ​'image'​:​ tf​.​FixedLenFeature​([],​ tf​.​string​), 
                        ​},​ name​=​'features'​) 
    ​# image was saved as uint8, so we have to decode as uint8. 
    image ​=​ tf​.​decode_raw​(​tfrecord_features​[​'image'​],​ tf​.​uint8​) 
    shape ​=​ tf​.​decode_raw​(​tfrecord_features​[​'shape'​],​ tf​.​int32​) 



    ​# the image tensor is flattened out, so we have to reconstruct the shape 
    image ​=​ tf​.​reshape​(​image​,​ shape​) 
    label ​=​ tf​.​cast​(​tfrecord_features​[​'label'​],​ tf​.​string​) 
    ​return​ label​,​ shape​,​ image 

 
Keep in mind that label, shape, and image returned are tensor objects. To get their values, you’ll 
have to eval them in tf.Session(). 
 
Style Transfer 
(Discussion of Style Transfer -- see assignment 2 handout) 
 


