Convolutional Neural Networks
+ Neural Style Transfer

Justin Johnson
2/1/2017

Outline

e Convolutional Neural Networks
o Convolution
o Pooling
o Feature Visualization
e Neural Style Transfer
o Feature Inversion
o Texture Synthesis
o Style Transfer

Convolutional Neural Networks:
Deep Learning with Images

IM.n.G E N ET Large Scale Visual Recogmtlon Challenge

The Image CIaSS|f|cat|on Challenge
1,000 object classes
1 431 167 | |mages

Drumstick
Mud turtle

Russakovsky et al. arX|v 2014

Object Detection = What, and Where

Localization
Where?

2+ person : 0.992

Recognition :>
-car: 1.000
What? i

- = = A
——
==

Object segmentation

person
person

sheep sheep

N

1 npersperson _person
1 L e PRTSgRrer person PersOBarson persomerson 2
% e g h 3 person
o persoperson .]

A " person
? person PerSOM person
person X
% Persen o ojerson ¢ { 4 , . 4
tennigrackdennis Acket s

tennis racket

sports ball

baseball bat

person

Figure credit: Dai, He, and Sun, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, CVPR 2016

Pose Estimation

Figure credit: Cao et al, “Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields”, arXiv 2016

Image Captioning

“straw” “hat”

"man in black shirt is playing “construction worker in orange “two young girls are playing with 'boy is doing backflip on
guitar. safety vest is working on road. lego toy." wakeboard."

’th

CNNy,

START “straw” “hat”

“man in blue wetsuit is surfing on
wave."

“girl in pink dress is jumping in 'black and white dog jumps over "young girl in pink shirt is
air." bar” swinging on swing."

Figure credit: Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015

Dense Image Captioning

people are in the background

light on the wall sign on the wall man wearing a white shirt
man with
black hair
man sitting .
on a table white laptop
on a table
man wearing man sitgilng
blue jeans on a table
woman
. wearing a
blue jeans on EilaiEleahis

the ground

man sitting on a bench man wearing black shirt
floor is brown

chair is brown

man wearing a black shirt
red shirt on a man Aelephant is standing

large green elephant is brown
trees o ' = : '
roof of a
building

trunk of an g
green trees

elephant :
in the
background
rocks on
the ground 4&3
leg of an
ball is elephant
white *|
ground is leg of an
visible 7 plephant

shadow on

ground is brown elephant is standing the ground

Figure credit: Johnson*, Karpathy*, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016

Visual Question Answering

Image

v Q:Who is behind the Q: What adorns the Q: How many cameras
2 batter? tops of the post? are in the photo?
G A:cCatcher. A: Gulls. A: One.
2 A Umpire. A: An eagle. A: Two.
£ A Fans. A: A crown. A: Three.
= A:Ball girl. A: A pretty sign. A: Four.
@
E’ H: Catcher. v/ H: Gulls. v H: Three. X
. g M: Umpire. X M: Gulls. v M: One. v/

What color are her eyes? How many slices of pizza are there? e

What is the mustache made of? Is this a vegetarian pizza? & H: Catcher. v/ H: Gulls. v H: One. v/
3 M: Catcher. ' M: A crown. X M: One. v’

Vv O “

Q: Why is there rope? Q: What kind of stuffed Q: What animal is bein|

animal is shown? petted?
2 A: To tie up the boats. A: Teddy Bear. A: A sheep.
Is this person expecting company? Does it appear to be rainy? ﬁi 10 Ee up hUUFSTS- ii F;"Uﬂkel-f- ﬁl glﬂal'-:a
ta i o iainnn : To hang people. : Tiger. : Alpaca.
What is just under the tree? Does this person have 20/20 vision? A To bt ethir baks A’ Bunny rabbit. A Pig.
. . " . . - H: To hit tether balls. H: Monkey. H: Asheep. v/
Figure credit: Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015 o e B i

M: To hang people. X M: Teddy Bear. v M: Asheep. v

=

: Totie up the boats. v/ H: Teddy Bear. v H: Goat. X
: To hang people. X M: Teddy Bear. v M: Asheep. v

=

Figure credit: Zhu et al, “Visual7W: Grounded
Question Answering in Images”, CVPR 2016

C
O
-
=

O

7p)

)
nd

o

D

O

-
N

)

O)

©
£

28
%

SRResNet

Figure credit: Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, arXiv 2016

Generating Art

Figure credit: Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural Networks”,
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
- R AN P (2%)
LR M
S N B

d

Figure credit: Gatys, Ecker, and Bethge, “Image Style
Transfer using Convolutional Neural Networks”, CVPR 2016

Figure credit: Johnson, Alahi, and Fei-Fei: “Perceptual Losses for Real-Time Style Transfer and
Super-Resolution”, ECCV 2016, https://github.com/jcjohnson/fast-neural-style

https://github.com/jcjohnson/fast-neural-style
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

What is a Convolutional Neural Net?

Fully-Connected Neural Network

o ‘ e‘a‘ 6\‘
WL N e W *‘\\Q\\\
N\\)\’\\\)) N\\)\
X S > a
C, C, C,
W W

Convolutional Neural Network

C,xHxW

C,*xC,*xkxk

o0 Q%
N0 . A0
N $O(\\\(\ ?00\\(\(3
S L, a | P
C,xHxW C,xHxW C,xH/2xW/2
'

2
C,HW/4xC,

Convolution Layer

32x32x3 image

32 height

3 depth

Slide credit: CS231n Lecture 7

16

Convolution Layer

32x32x3 image

5x5x3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

17
Slide credit: CS231n Lecture 7

ConVOI Ut|0n I—ayer Filters always extend the full
S depth of the input volume

32x32x3 image /
5x5x3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

18
Slide credit: CS231n Lecture 7

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

™~ 1 number:

19
Slide credit: CS231n Lecture 7

Convolution Layer

Ve

I

32

Slide credit: CS231n Lecture 7

—

V
——0

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

e

.

20

28

Convolution Layer

e

I

32

Slide credit: CS231n Lecture 7

—

V
——0

consider a second, green filter

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

y

o[

21

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

3

32

Convolution Layer

activation maps

28

28

We stack these up to get a “new image” of size 28x28x0!

Slide credit: CS231n Lecture 7

22

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

Slide credit: CS231n Lecture 7

224x224x64

|

"'_‘.-

224

112x112x64
pool

E—

— 112
downsampling
112

23

Single depth slice

MAX POOLING

bPl111)24
X

5 06|78

3121110

112134

y

Slide credit: CS231n Lecture 7

max pool with 2x2 filters
and stride 2

-

24

Case Study: LeNet-5

[LeCun et al., 1998]

C3: . maps 16@10x10
INFUT C1: feature maps 54 1. maps 16@5x5

B@2828 :
AZaz 52:f. maps GE: layer e layer OUTPUT

BE@14x14 s o

rr

| | Full cmrlectiﬂn | Gaussian connections
Convalutions Subsampling Comvolutions Subsampling Full connection
Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]
25

Slide credit: CS231n Lecture 7

Case Study: AlexNet

[Krizhevsky et al. 2012]

=\ JES EXV o
7 E . 3| Y
107 128 204¢ 2048 dense
-, \ 13
T B ey T

13 dense dense|

1000

192 178 Max

Max 128 Max pooling
pooling pooling

Full (simplified) AlexNet architecture:
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOLA1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOLZ2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores)

204 2048

26
Slide credit: CS231n Lecture 7

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONYV stride 1, pad 1
and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013
->

7.3% top 5 error

Slide credit: CS231n Lecture 7

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB imagk)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 l conv3-128 J conv3-128
conv3-128 | conv3-128 j| conv3-128 J conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 j| conv3-256 @ conv3-256
conv3-256 | conv3-256 | conv3-256 | con conv3-256 W conv3-256
/ convl-256 §| conv3-256 [conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 l| conv3-512 J conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 §| conv3-512 @ conv3-512
convl-512 § conv3-512 § conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 §| conv3-512 W conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 §| conv3-512 W conv3-512
convl-512 § conv3-512 § conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Table 2: Number of parameters (in millions).

Network

A A-LRN

B

&

D

Number of parameters

133

133

134

138

144

27

Filter
concatenation

ﬂ\

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

4

§

1x1 convolutions

1x1 convolutions

Previous layer

Slide credit: CS231n Lecture 7

[}

3x3 max pooling

Case Study: GooglLeNet (szegedyetal, 2014

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

28

34-layer plain 34-layer residual

Case Study:
Res N et 224x224x3

[He et al., 2015] spatial dimension

A \ only 56x56!

| 7x7 conv, 64, /2 | | 7x7 conv, 64, /2 |
v v
pool, /2 pool, /2

| 3x3 conv, 64 I | 3x3 conv, 64
Y 4
| 3x3 conv, 64 | | 3x3 conv, 64
Y
| 3x3 conv, 64 | | 3x3 conv, 64
\ 4 4
| 3x3 conv, 64 | | 3x3 conv, 64
\ J
| 3x3 conv, 64 | [3x3 conv, 64
Y Y
| 3x3 conv, 64 | I 3x3 conv, b4
y_ e
| 3x3conv,128,/2 | [3x3conv,128,/2 | e,
v v M
| 3x3 conv, 128] | 3x3 conv, 128 I dh
s
| 33conv,128 | | 3x3conv, 128
Y A 4
| 3x3conv,128 | | 3x3conv, 128
v

29
Slide credit: CS231n Lecture 7

Case Study ResNet (Heetal, 2015

ILSVRC 2015 winner (3.6% top 5 error)

Researchl 5.3 weeks of training
Revolution of Depth on 8 GPU machine

AlexNet, 8 layers % VGG, 19 layers % ResNet, 152 layers

(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)
at runtime: faster
than a VGGNet!
(even though it has
8x more layers)

>1CCV e

(slide from Kaiming He's ICCV 2015 presentation)

30
Slide credit: CS231n Lecture 7

Mlicrosaft

Research

Revolution of Depth 2.2

R 25.8
152 layers
\ 16.4

‘ 11.7
[22 layers l [19 Iayers]

\ET

3 37 I I 8 !avers L 8 Iavers shailnw

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Flccv

h'r'w-v\..v*-'- = erwer foon

Kaiming He, Xiangyu Zhang, Shaoging Ren, & lian Sun. "Deep Residual Learning for Image Recognition”. ar¥iv 2015.

(slide from Kaiming He’s ICCV 2015 presentation)

31

Visualizing ConvNet Features

Visualizing CNN features: Look at filters AlexNt

Slide credit: CS231n Lecture 9

Many networks learn similar filters

e B2 NWiAGNAANEGaSER Y =
Je=zonp SEUANENNGGNNENDN
EmNmmEN NSRS
ERESNS 0 0 A i e e M L

EIIIII-
B 01 P I N P

Slide credit: CS231n Lecture 9

L

o

S I I S = IR
UZRENESENN
s, b
: -
EESlANESENDNS
NEUNSEEEINNMM

R AN S = R EE
ENENGEE=ENERV ANSSE d@n
ENEEEE ENEEENENNANND
ElRTENYEZZSS SSERREEN
HEEVs=/AENNEAEENINNEE
ANESANEECSIESENNANNE
DESEZAEE MNP EaEEdE
EEESLL THANSNERENSENY
ENERELEE U EE NN ENES
IAEENNSNENNS ShaaNShn
ERZLSUNNANDED NN ES VNG
HAPFEERREZANSNOORESS
NS I NI e.eEE
SEERSI=THMNENEVE==SE
O N 0 1772 IO I
LA LA] DR

Visualizing CNN features: Look at filters

Weights:

e BULEREREEDEL L EE SR RNCEFL P D L P bl ded LT}
AR A RN CAEI NN RO) (IR LT RN S
W) BRSNS) MY SR AN O ST R
R (PN RN AC AN AN) (PRSI IRR RS
ERF) (PRI FREEAAANENEANE) (D ANASEEN AR AR ERD
UL EATE L TR b D DT LT L P B PR [frbe]
FECOR)ETFREEIFESCEDNERENBARS)(INECTEEAEEREAYSS
LR YRR T FREL PR DR T Tl R TR LR | T)
AAFNYAN) (AN TN A AN) E R EE R R
EREERFEEN) AR EARTERN L ERENER N)(CFENARERREE
HESFERTAE)

Weights: ' e
(A EEEN R NN (PO EMEE P AVESECR) (PRNETECHD N
AR END) (AL LN ES YN (AT EREE LA aA 5 L .
BE)(ANS IREARECANER VK)(BEDE S ANEL RSN S W) (AR - T 3%
AL TR (SRR N STV) (NATATONRE NN P == —
ulnEHII!EullllnllnnnlndﬂﬂﬂaﬂaIEHMIEwnwnlﬂI | = =

SR TENEIEES) (NI TN U (WA N EW A N QR ' E’:
FRMNEN) AEEEUSAAFEEEEPIGN)(EEInTRIfRdEODEFE)(2 Jits < -
EEERFEEERREREE R) (SFNASTANATEFINES)(ANEAEFOSN . - 55‘“ -
ol el U

Image credit: CS231n Lecture 9; Filters from higher layers don’t make much sense 35

Filters from ConvNetJS CIFAR-10 model

Visualizing CNN features: (Guided) Backprop

Choose an image Choose a layer and a neuron in a CNN
111L__‘ 5; ‘ ‘ ! !;- ‘113 /3;1 J " 3!‘ L \
24 :r:g:’], | 5 N \ 384 384

Question:
How does the chosen neuron respond to the image?

36
Slide credit: CS231n Lecture 9

Visualizing CNN features: (Guided) Backprop

1. Feed image into net

dense dense
13 13 13 dense

[Tt E \N—
oA ! g I A s T s
‘ Pl I
; : ; |
Lt P 3 3
384 | ‘ 256 0
= o 0%

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014

Dosovitskiy et al, “Striving for Simplicity: The All
Convolutional Net”, ICLR Workshop 2015

Slide credit: CS231n Lecture 9

Visualizing CNN features: (Guided) Backprop

1. Feed image into net

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014

Dosovitskiy et al, “Striving for Simplicity: The All
Convolutional Net”, ICLR Workshop 2015

Slide credit: CS231n Lecture 9

38

Visualizing CNN features: (Guided) Backprop

1. Feed image into net

7 dense dense
13 1 13 dense
\ . ‘
. P — S
} 1B I At y I s
27 A 3 ;‘ ‘
\ 384 | 384 \| 236 1000
Max
26
i pooling 4096 4006
pooling soolng

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

3. Backprop to image:

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014

Dosovitskiy et al, “Striving for Simplicity: The All
Convolutional Net”, ICLR Workshop 2015

Slide credit: CS231n Lecture 9

39

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014

Dosovitskiy et al, “Striving for Simplicity: The All
Convolutional Net”, ICLR Workshop 2015

Slide credit: CS231n Lecture 9

Visualizing CNN features: (Guided) Backprop

1. Feed image into net

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

3. Backprop to image:
Guided
backpropagation:
instead

40

cdingi ﬁ
}}h ,J”:_’W’],‘
SUUK KL N

guided backpropagation

Visualization of patterns
learned by the layer conv6
(top) and layer conv9
(bottom) of the network
trained on ImageNet.

Each row corresponds to
one filter.

, L _ guided backpropagation
The visualization using

“guided backpropagation” is
based on the top 10 image
patches activating this filter
taken from the ImageNet
dataset.

41
Dosovitskiy et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Visualizing CNN features: Gradient Ascent

(Guided) backprop: Gradient ascent:
Find the part of an Generate a synthetic
image that a neuron image that maximally
responds to activates a neuron

[* = arg max, [{(I)|+ R(I)

N

Neuron value Natural image
regularizer

42

Visualizing CNN features: Gradient Ascent

arg max[5.(1)]— 1]

score for class ¢ (before Softmax)

1. Initialize image to zeros

dense dense
dense

55 ' r
\ 13 13 13
11) |
{ ") | 3 H g
. }) N | [g s ' *
zero image S e sl P e A A . 2 A\
24 o N ' 384 384 256 1000
RE Max 1

wwwwwwww
Max A pooling 4096 4096

Repeat:
2. Forward image to compute current scores
3. Set gradient of scores to be 1 for target class, 0 for others

4. Backprop to get gradient on image

5. Make a small update to the image
43

Simonyan et al, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014

Visualizing CNN features: Gradient Ascent

washing machine computer kevboard

bell pepper limousine

Simonyan et al, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014

Visualizing CNN features: Gradient Ascent

Better image regularizers give prettier results:

Flamingo Pelican Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan 45
Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015

Visualizing CNN features: Gradient Ascent

Use the same approach to visualize intermediate features

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015

Visualizing CNN features: Gradient Ascent

Use the same approach to visualize intermediate features

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015

Visualizing CNN features: Gradient Ascent

You can add even more tricks to get nicer results:

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each
Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016

48

Visualizing CNN features: Gradient Ascent

GAN image priors give amazing results:

W L, L1

. - -. LA i = 1 : . b e~ r - _ : .- =i
chest running shoe water jug pool table broom cellphone aircraft carrier entertainment ctr

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks”, NIPS 2016

Feature Inversion

Given a feature vector for an image, find a new image such that:
- Its features are similar to the given features
- It “looks natural” (image prior regularization)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

50

Feature Inversion

Given a feature vector for an image, find a new image such that:
- Its features are similar to the given features
- It “looks natural” (image prior regularization)

x* = argmin £(P(x), D) + \R(x)

xeRH}(WKC

UD(x), Do) = [|®(x) — Dol

8
2

Rys(x) =) ((mt‘:jJrl — 245)° + (@ig14 = I{j)z)

1,

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

51

Feature Inversion

Given a feature vector for an image, find a new image such that:
- Its features are similar to the given features
- It “looks natural” (image prior regularization)

— T
x* — argmin g(‘D(X)} (I)[}) 3. /\R(X) Given feature vector

xeRH}(WKC —

» Features of new image
((®(x), ®o) = [|®(x) — B0l

8
2 2\ 2
va’(x) — E ((mf:j-l—l - $fj) + (I£+1,j — mij)) \
i,j Total Variation regularizer

(encourages spatial smoothness)

52
Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Feature Inversion

original image

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Reconstructions
from the 1000
log probabilities
for ImageNet
(ILSVRC)
classes

53

Feature Inversion

Reconstructions from the representation after last last pooling layer
(immediately before the first Fully Connected layer)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

54

Feature Inversion

Reconstructions from intermediate layers

Higher layers are less sensitive to changes in
color, texture, and shape

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

(Neural) Texture Synthesis

Texture Synthesis

Given a sample patch of some texture, can we
generate a bigger image of the same texture?

ﬂ_,

Input

57

Texture Synthesis

H : Neighborhood N

p

(b)

Wei and Levoy, “Fast Texture Synthesis using Efros and Leung, “Texture Synthesis by
Tree-structured Vector Quantization”, SIGGRAPH 2000 Non-parametric Sampling”, ICCV 1999 58

Texture Synthesis

LU LULLL L LU 1L 10 UL AL, 3 LU U LV L
stodatieazs soune Tring rooms,” as Heft he fastodit|
315 dat noears oortseas ribed itlastor hest bedian A1, 1
econical Homd ith Al Heft ars oy as da Lewindailf]
Yian A1 Ths," a5 Lewning questies last aticarsticall. He
utit becornes harder o 1a. j5 dian A1 1ast fal counda Lews, at "this dailwears d ily
sound itself, at "this dail| edianicall. Hoorewsing roorns,” as House De fale £ De
wing roorns,” as House Der und itical counsestscribed it Last fall. He fall. Hefft
tsceibedit last fall. He fail vs oynheoned it nd it be Left a yinging questica Lewrin
athe left a inging QUestion jears coscorns,” astore years of Monica Lewinosw seee
wee rears of Monica Lewit 5 Thas Fring zoorae stoondscat nowea ze Left a roouse
inda Tripp?” That now seer houestof Mie Lelft a List fast ngine lavwesticars Hef
#olitical coraedian &1 Frar 10 it yip?” Telouself, a ringind itéonestidita ring que:
txtphase of the stonr will asvical cofs ore wears of Moung fall. He ribof Mouse
ape wears ofanda Tripp?” Thatbwedian &1 Lest fasee yea
ada Tripp? dolitical cornedian A1ét be fiwrse ring que
olitical corw ve wears of the storears ofas 1 Frat nica L
265 Lewr 5¢ lesta virne 1 He fas quest neing of, at beou

Wei and Levoy, “Fast Texture Synthesis using Efros and Leung, “Texture Synthesis by
Tree-structured Vector Quantization”, SIGGRAPH 2000 Non-parametric Sampling”, ICCV 1999

| have a Torch implementation here:
https://github.com/jcjohnson/texture-synthesis

59

Neural Texture Synthesis

1. Pretrain a CNN on ImageNet (VGG-19) 512

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

Neural Texture Synthesis

Pretrain a CNN on ImageNet (VGG-19) 512

2. Run input texture forward through CNN, ‘ I
record activations on every layer; layer i -pooM

gives feature map of shape C, x H x W. sz ﬁ
convd-_a:E =

—_—

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

61

Neural Texture Synthesis

1. Pretrain a CNN on ImageNet (VGG-19) 512 -

2. Run input texture forward through CNN, > G-
record activations on every layer; layer i -
gives feature map of shape C, x H. x W, e

3. Ateach layer compute the Gram matrix Fconva_3) 2 = > D
giving outer product of features:

Gij - Zk: ﬂikF;k(shape C.xH) 1NEI;; comv8 3, 22 = = M—’ |:|

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

62

Neural Texture Synthesis

1. Pretrain a CNN on ImageNet (VGG-19) 512

2. Run input texture forward through CNN, convs_2; = 2
record activations on every layer; layer i -
gives feature map of shape C, x H. x W, e

3. Ateach layer compute the Gram matrix Fconva_3) 2 = > D
giving outer product of features:

Géj - Zk: ﬂEkF;k(shape Ci X Hi) 1.“FIEE convsfc:g === u—’ I:‘

4. |Initialize generated image from random s,
. . S 2
noise [— —.com2_2 - - - — - — _ 1J —> D

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

63

—_—

Gij = D FixFjk(shape C, x H) “tmmmnEees]——| | | |* I
k
4.

5.

Neural Texture Synthesis

Pretrain a CNN on ImageNet (VGG-19)

Run input texture forward through CNN, 1"' g) “ Fr ﬂ
record activations on every layer; layer i T

gives feature map of shape C, x H. x W, si2

At each layer compute the Gram matrix El;; convé_3; = = ﬂ—’ D D ‘ |] pL-1

giving outer product of features: T

256

T

Initialize generated image from random 1

noise PR - p— L] L] [X -
Pass generated image through CNN,

compute Gram matrix on each layer 1"?_ . P — 1J—> D D L | :

= S |
oF desrent

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

64

—_—

Gi; =Y FiyFly (shape C,xH) 1'“FIEE conv3_2; 2 = = = u—' L] L+ | |
k
4.

5.

Neural Texture Synthesis - T -a) o= un

Pretrain a CNN on ImageNet (VGG-19)

—
Run input texture forward through CNN, a D Pr ﬂ
record activations on every layer; layer i T

gives feature map of shape C, x H. x W, sz

At each layer compute the Gram matrix F2iconva 32 = ﬂ—’ D D ‘ |] pL-1

giving outer product of features: T

256

T

Initialize generated image from random 1

noise PR - p— L] L] [X -
Pass generated image through CNN,

compute Gram matrix on each layer 1"?_ o e oo o 1J—> D D L | :

Compute loss: weighted sum of L2 - T oL Gradient
distance between Gram matrices *"’-‘ﬁﬁ e T

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

65

—_—

¢
4.

5.

= Z Fj;. F} (shape C, x H)
k

Neural Texture Synthesis - T -a) o= un

Pretrain a CNN on ImageNet (VGG-19)

—
512
. F o = > | L AL| . 5
Run input texture forward through CNN,) ﬂ
record activations on every layer; layer i _mI4 OF; OE,, £ T
Pt FL-1

gives feature map of shape C, x H. x W, e

At each layer compute the Gram matrix F2: conva

giving outer product of features:
256|

ol -
IE-- conv3_3,
— 1

Initialize generated image from random 1=

noise e
Pass generated image through CNN,
compute Gram matrix on each layer 1"?_ e T ————
Compute loss: weighted sum of L2 ' o
distance between Gram matrices

Backprop to get gradient on image

66

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

Neural Texture Synthesis - T -a) o= un

Pretrain a CNN on ImageNet (VGG-19)

—
512
. F o = > | L AL| - 5
Run input texture forward through CNN,) ﬂ
record activations on every layer; layer i _mI4 OF; OE,, £ T
Pt FL-1

gives feature map of shape C, x H. x W, si2

N —

3. At each layer compute the Gram matrix 1 El;; convé_3; = = ﬂ—’ D D f__#/, |] pL-1

giving outer product of features: (T

Gij = Zk:ﬂzkpjk[shape C x H) “emaszzzzg—— L LT

(T

4. |Initialize generated image from random 1= i

noise o0y’ i o p— L1 L - | A 1
5. Pass generated image through CNN, ﬁ

compute Gram matrix on each layer 1"1'_ e T —— 1J—> D D D : M
6. Compute loss: weighted sum of L2 - o T

distance between Gram matrices U-i“-ﬁ descent T

Backprop to get gradient on image
Make gradient step on image
GOTO 5

©o®N

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

67

Reconstructing from
higher layers recovers
larger features from the
input texture

Gatys et al, “Texture Synthesis using Convolutional
Neural Networks”, NIPS 2015

68

Style Transfer:
Feature Inversion + Texture Synthesis

Neural Style Transfer: Feature + Gram reconstruction

Feature
reconstruction

Texture synthesis
(Gram
reconstruction)

Figure credit: Johnson et al, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

70

Neural Style Transfer

Given a content image and a style image, find a new image that
- Matches the CNN features of the content image (feature reconstruction)
- Matches the Gram matrices of the style image (texture synthesis)

Combine feature reconstruction from Mahendran et al with Neural Texture
Synthesis from Gatys et al, using the same CNN!

Content Image) Style Image

Gatys et al, “A Neural Algorithm of Artistic Style”, arXiv 2015
Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

71

Neural Style Transfer

Given a content image and a style image, find a new image that
- Matches the CNN features of the content image (feature reconstruction)
- Matches the Gram matrices of the style image (texture synthesis)

Combine feature reconstruction from Mahendran et al with Neural Texture
Synthesis from Gatys et al, using the same CNN!

Content Image | Style Image Stylized Result

Gatys et al, “A Neural Algorithm of Artistic Style”, arXiv 2015 72
Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

—

S ©

Neural Style Transfer

2
EyL= Z (G* - A%) Liotal = 0Lcontent + _6£sty£e
. WL _ L L
Pretrain CNN Gy = > FikFji.

——
512 . k
Compute features for | : FL ﬂ o 12 1
content image o A

Compute Gram matrices
for style image
Randomly initialize new
image

Forward new image
through CNN

Compute style loss (L2 ' [~ o -] [I .
distance between Gram ﬁ 1
matrices) and content T s -] [—
loss (L2 distance are OL ot Sradiert“ T
between features) o N Loy = Y wiEl oz escen

1

Loss is weighted sum of
style and content losses ¢ —
Backprop to image

Take a gradient step

GOTO 5

73

Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

Neural Style Transfer

Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

74

Neural Style Transfer

From my implementation on GitHub:
https://qithub.com/jcjohnson/neural-style

Q This repository Pull requests Issues Gist & 4 @-
jejohnson [neural-style © Unwatch~ 587 % Star 11,663 YFork 1,701
< Code Issues 201 Pull requests 18 Projects 0 Wiki Pulse Graphs Settings

Torch implementation of neural style algorithm — Edit

(D 154 commits 1 branch Oreleases A2 14 contributors s MIT

Branch: master~ New pull request Createnew file Upload files Find file

75

Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/neural-style

Neural Style Transfer: Style / Content Tradeoff

More weight to < More weight to
content loss style loss

Justin Johnson, “neural-style”, https://github.com/jcjohnson/neural-style

76

https://github.com/jcjohnson/neural-style

Neural Style Transfer: Style Scale

Resizing style image before running style transfer
algorithm can transfer different types of features

Larger style

Smaller style
image image

- >

77
Justin Johnson, “neural-style”, https://github.com/jcjohnson/neural-style

https://github.com/jcjohnson/neural-style

Neural Style Transfer: Multiple Style Images

Mix style from multiple images by taking a weighted average of Gram matrices

Justin Johnson, “neural-style”, https://github.com/jcjohnson/neural-style

78

https://github.com/jcjohnson/neural-style

Neural Style Transfer: Multiple Style Images

More “Scream” » More “Starry Night”

79
Justin Johnson, “neural-style”, https://github.com/jcjohnson/neural-style

https://github.com/jcjohnson/neural-style

Neural Style Transfer: Preserve colors
Style Content

Perform style transfer only on the
luminance channel

(eg Y in YUV colorspace);

Copy colors from content image

http://blog.deepart.io/2016/06/04/color-independent-style-transfer/ Normal style transfer
Gatys et al, “Preserving Color in Neural Artistic Style Transfer”, arXiv 2016

Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, arXiv 2016

http://blog.deepart.io/2016/06/04/color-independent-style-transfer/
http://blog.deepart.io/2016/06/04/color-independent-style-transfer/

Simultaneous DeepDream and Style Transfer!

Jointly minimize feature reconstruction loss, style reconstruction
loss, and maximize DeepDream feature amplification loss!

81
https://github.com/jcjohnson/fast-neural-style/issues/5

https://github.com/jcjohnson/fast-neural-style/issues/5
https://github.com/jcjohnson/fast-neural-style/issues/5

Style Transfer on Video

Running style transfer independently on each
video frame results in poor per-frame consistency:

Original frames

Ruder et al, “Artistic style transfer for videos”, arXiv 2016

Style image

82

Style Transfer on Video

Running style transfer independently on each
video frame results in poor per-frame consistency:

Original frames

Appearance of the rock formation different in each frame!

Ruder et al, “Artistic style transfer for videos”, arXiv 2016

Style image

83

Style Transfer on Video

Tricks for video style transfer:

- Initialization: Initialize frame t+1 with
a warped version of the stylized result Freiburger Miinsterplatz
at frame t (using optical flow) ' :
- Short-term temporal consistency:
warped forward optical flow should be
opposite of backward optical flow

- Long-term temporal consistency:
When a region is occluded then visible
again, it should look the same

- Multipass processing: Make multiple
forward and backward passes over the
video with few iterations per pass

Ruder et al, “Artistic style transfer for videos”, arXiv 2016 84
https://github.com/manuelruder/artistic-videos

https://github.com/manuelruder/artistic-videos
https://github.com/manuelruder/artistic-videos
http://www.youtube.com/watch?v=Khuj4ASldmU

Beyond Gram Matrices: CNNMRF

|ldea: Use patch matching like classic texture synthesis,
but match patches in CNN feature space rather than pixel space!

Neural patches at dlfferent layers of VGG19:

input image relu2 1 relu3 1 relud 1 relus 1

m

Ey(®(x),0(x,)) = Y _ [[W:(2(x)) — Uiy (@(x))]? NN(2) := arg min - (Ep(gc))))| |‘Ix11i(((E(;j)))l
(2)

§=

For each neural patch in generated image, find nearest-neighbor
neural patch in style image; minimize distance between patches

Li and Wand, “Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis”, CVPR 2016 85
https://github.com/chuanli1 1/CNNMRF

https://github.com/chuanli11/CNNMRF
https://github.com/chuanli11/CNNMRF

Beyond Gram Matrices: CNNMRF

Content

Li and Wand, “Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis”, CVPR 2016
https://github.com/chuanli11/CNNMRF

Style

86

https://github.com/chuanli11/CNNMRF
https://github.com/chuanli11/CNNMRF

Fast Style Transfer

Problem: Style transfer is slow;
need hundreds of forward +
backward passes of VGG

Solution: Train a feedforward
network to perform style transfer!

87

Fast Style Transfer

(1) Train a feedforward network for each style
Use pretrained CNN to compute same losses as before
After training, stylize images using a single forward pass

Style Target gqb,relul_Q Egb,relu2_2 Eqﬁ,reluB_B €¢,re1u4_3

P style style style style
-------------- y S A Ad AA Y

----------- - . ’ Loss Network gb
> yc ———————————————— o

Content Target

Works real-time at test-time!

Johnson et al, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

Fast Style Transfer

Style X
The Starry Night, ey The Muse,
Vincent van Gogh, &8k Pablo Picasso,

Style

Composition VII,
Wassily ! =Y

Kandinsky, 1913 B5s

The Great Wave off
Kanagawa, Hokusai,
1829-1832

‘v.,;; i &Y ~
3 g\-a ”&}i

Johnson et al, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016
https://github.com/jcjohnson/fast-neural-style

Works real-time on video!

89

https://github.com/jcjohnson/fast-neural-style
https://github.com/jcjohnson/fast-neural-style

Fast Style Transfer: Texture Networks

Concurrent work with mine
with comparable results

1]

[
|

Texture

Bz

o ()

Multiscale architecture for generator

Content Texture nets (ours) Gatys et al. Style

Ulyanov et al, “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images”, ICML 2016 20
https://github.com/DmitryUlyanov/texture_nets

https://github.com/DmitryUlyanov/texture_nets
https://github.com/DmitryUlyanov/texture_nets

Fast Style Transfer: Instance Normalization

A minor tweak to the architecture of the generator significantly improves results

Ulyanov et a Johnson et a

: TN . w .'.'- \‘ | A ':'/

__ Instance
.+ Normalization

Ulyanov et al, “Instance Normalization: The Missing Ingredient for Fast Stylization”, ICML 2016

91

Fast Style Transfer: Multiple styles with one network

Use the same network for multiple styles using
conditional instance normalization:
learn separate scale and shift parameters per style

X = Z= ?s xnorm 1

norm

Dumoulin et al, “A Learned Representation for Artistic Style”, arXiv 2016
https://research.googleblog.com/2016/10/supercharging-style-transfer.html

for realtime style blending!

92

https://research.googleblog.com/2016/10/supercharging-style-transfer.html
https://research.googleblog.com/2016/10/supercharging-style-transfer.html

Fast Style Transfer: Multiple styles with one network

Dumoulin et al, “A Learned Representation for Artistic Style”, arXiv 2016
https://research.googleblog.com/2016/10/supercharging-style-transfer.html

93

http://www.youtube.com/watch?v=6ZHiARZmiUI
https://research.googleblog.com/2016/10/supercharging-style-transfer.html
https://research.googleblog.com/2016/10/supercharging-style-transfer.html

For more details on CNNSs,
take CS 231n in Spring!

