CS222 / Phil358 Homework 1

Due: April 21, 2010

1. (a) Show that any relation \(R \) that is Euclidean and reflexive is also symmetric and transitive.

(b) Give a derivation in the logic \(KT \) of the \(D \) axiom, \(\neg \Box (p \land \neg p) \). In other words, show that it follows in \(K \) from the axiom \(T \) alone.

2. Show that axiom 5, \(\Diamond \phi \rightarrow \Box \Diamond \phi \) is valid on a frame \((W, R) \), if and only if \(R \) is Euclidean.

3. Consider the following logic \(L \) in the language with two operators, \(K \) and \(B \). We take all \(S5 \) axioms for \(K \), all \(KD45 \) axioms for \(B \), and following two “bridge axioms”:

\[
K\phi \rightarrow B\phi \\
B\phi \rightarrow BK\phi
\]

We take as rules for \(L \) both modus ponens and the necessitation rule for \(K \) and \(B \) (from \(L \vdash \phi \), infer \(L \vdash K\phi \) and \(L \vdash B\phi \)). Show that \(L \vdash K\phi \leftrightarrow B\phi \).

4. Show that \(\neg K\neg K\phi \rightarrow K\neg K\neg K\phi \) is valid in all (single agent) \(KB \)-models. This can either be done directly by giving a model-theoretic argument, or by providing a derivation from the sound and complete proof system given on p.435-436 of Multiagent Systems (p.418 of the hard copy).

5. In this problem we consider a possible definition of common belief, analogous to the definition of common knowledge. Suppose we have just two agents, 1 and 2. Given a frame \((W, R_1, R_2) \), define \(R := (R_1 \cup R_2)^* \), i.e. the transitive closure of \(R_1 \cup R_2 \). Then we define our common belief operator \(C \) as follows:

\[
M, w \vDash C\phi \iff \forall x \in W, \text{ if } w R x \text{ then } M, x \vDash \phi
\]

Provide a \(KD45 \) structure \(M \), a state \(w \), and a formula \(\phi \), such that \(M, w \vDash B_1 C\phi \), but \(M, w \nvDash C\phi \).