
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Classifying responses on online discussion forums

Aaron Abajian

aabajian@stanford.edu

Abstract

There are online discussions forums covering an endless variety of topics. Each
forum has many topic-specific questions with expert answers. However, the best
answer is often buried somewhere in the discussion thread. Given a question on
an online forum, we focus on the problem of classifying each response to the
question as an answer or a non-answer. Where the answer label indicates if the
response made a reasonable attempt at answering the question (even if the answer
is incorrect).

We train a recursive neural network (RNN) using 59,205 question-response
pairs from ten online forums with true labels obtained through Amazon Me-
chanical Turk. Our model reads each question-response pair from left-to-right
similar to a next-word prediction RNN. The model minimizes the number of
incorrectly-classified question-response pairs. After hyperparameter tuning, the
model achieved a 76.3% classification accuracy. We qualitatively validate the
model by showing common non-answer responses such as “thanks”, “bump”, and
“nevermind” result in strong neuronal activation.

Our work builds off of previous work done by Aaron Abajian as part of CS 229
and CS 221. In those classes, a logistic regression (LR) classifier and a support-
vector machine (SVM) classifier were trained using hand-selected features. The
SVM and LR classifiers outperformed the RNN due to hand-crafted features. We
suggest ways for improving the RNN to match their performance.

1 Introduction

Online discussion forums have existed since the early days of the Internet. A forum consists of
threads with one or more posts. An original poster (OP) creates a thread by posing a question
pertinent to the forum’s topic. The OP can expect accurate answers because niche forums attract
experts in their field.

One problem with forums is that good answers are often buried somewhere in the discussion thread.
Traditional forums do not provide functionality to re-order responses based on correctness, they
merely list responses chronologically. Moreover, users are free to respond with non-answers such
as: “I have this same problem!”, “Can you provide more information?”, “No idea, good luck.”, and
“Thanks, that solved it.” None of these responses constitute answers to the OP’s question. New
visitors with the same question must invariably sift through non-answers to find answers. This often
leads to the creation of a new thread with the same question and the ubiquitous non-answer response,
“This has been asked many times, why not use the search function next time?”

Question and Answer (Q&A) sites are a recent trend that attempt to resolve these issues. Sites such
as StackOverflow, Answers.com, Yahoo! Answers, and Quora emphasize answer-only responses to
questions that are up-voteable by users. Non-answers, such as the examples above, are delegated to
comment sections or down-voted from view.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

It would be beneficial if responses on traditional forums could be up-voted automatically. In this
project, we address a relaxed version of this problem. We seek to distinguish answers from non-
answers. We define an answer to be any response that makes a reasonable attempt at answering the
question.

We train a recurrent neural network (RNN) that assigns a probability to each question-response
pair that indicates how likely the response is to answer the question. Responses with less than 0.5
probability are classified as non-answers. Responses may be re-ordered based on their probability
assignments so that non-answers are moved to the bottom of the thread. A forum search engine that
excludes non-answers increases the likelihood that new visitors will find the answer to their question
in a reasonable amount of time.

Note that this work builds off of previous work performed by Aaron Abajian in CS 229 and CS 221.
In those projects, a support-vector classifier and a logistic regression classifier were trained on the
same classification task. We compare performance of the RNN to those models in the discussion
section.

2 Background / Related Work

Question-answering (Q&A) systems have received considerable attention in the past two decades. A
variety of models have been trained using decision trees [1], support vectors machines (SVMs) [6]
[7], and recurrent neural networks [4]. The majority of these models are trained using large databases
of facts and factoids (small snippets of knowledge). Given a question, these models compute a
probability distribution over all known facts and return those facts with the highest probabilities.

The decision tree and SVM models typically relay upon n-gram feature vectors and cosine simi-
larity. They may also include special features such as date indicators, parts-of-speech tagging, and
named entity tagging. Their performance is limited because they cannot take into consideration
long-distance interactions such as questions with multiple sentences and deep relationships between
words, phrases and their context.

The neural network models, in particular [4], have been more successful than traditional n-gram
based word-matching schemes because they are able to take into consideration the “syntactic glue”
that gives meaning to a question and its context. Higher-dimensional learned word and phrase
vectors have been shown to capture deep syntactical relationships [5]. For example, Pennington, et.
al. show the close proximity to the word vectors for “queen - woman” and “king - man”. Perhaps
more poignant for question-answering is the ability of learned word vectors to identify new words
that mean approximately the same thing. For example, “litoria” and “leptodactylidae” are both
appropriate responses to the question, “What are some frog genera?” Their learned word vectors are
both similar to “frog”, a fact that is quite well hidden in n-gram only features.

Fact-based Q&A systems are inherently limited by their corpus of training data. This is a problem
for both SVMs and RNNs. The Internet represents a vast corpus of knowledge, but the information
content is not well-structured for Q&A model training. Recent approaches have wielded question
and answer data available from sites such as Yahoo! Answers and Quora [2]. The content from
these sites is presented in a format that lends itself to training. Models trained on Q&A site data
have similar training objectives, but their space of viable answers is greatly expanded.

Yet, the scope of Q&A sites remains small in comparison to the ubiquity of online forums. Forums
are structured websites that facilitate question answering, however responses to forum questions
need not answer the original question. This leniency makes it difficult to use raw forum data to train a
question answering system. Given a forum question, our goal is to distinguish responses that attempt
to answer the question from those that do not. It is a simplification of question-answering in that we
are not searching for the best answer to a question. Rather, our work focuses on the general structure
of non-answers - responses such as comments, follow-up questions, and concluding remarks. By
applying our classifier, non-answers to forum questions may be removed and the resulting question-
answer pairs used for subsequent model training.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3 Approach

We train a recursive neural network (RNN) that labels responses to forum questions as answers or
non-answers. The answer label indicates any response that attempts to answer the question.

Our RNN model is largely based on next-word prediction RNNs. Given the first few words of a sen-
tence, these RNNs predict the next word by assigning a probability distribution over the vocabulary
of words. Our model reads each question-response pair from left-to-right and produces a probability
distribution over the two classes answer and non-answer.

3.1 Model

Let x be a question-response pair such that x = x1 x2 · · · xn. For example:

<Q> What color is the sky? </Q> <R> The sky is blue. </R>

In the question-response pair above, we have x1 = <Q>, x2 = What, x3 = color, · · · , x13 = </R>.

The answer and non-answer probabilities are given by:

P (y = k | x1 x2 · · · xn) = softmax
(
Uh(t)

)
k

= ŷk

Thus, ŷ1 is the probability of an answer and ŷ2 = 1 − ŷ1 is the probability of a non-answer. We
define the recursive function h(t) similar to next-word prediction RNNs:

ht = sigmoid (Hht−1 + Lxt
)

Where Lxt
is the column of our word-vector matrix corresponding to the word xt.

One difficulty with our approach is that we allow for an arbitrary window size. The question-
response pair x has n tokens, resulting in n evaluations of h (e.g. t ranges from 1 to n). We
assign a label to the question-reponse pair after the final token (e.g. xn) is seen. Previous work has
demonstrated that such models quickly lose memory due to vanishing gradients.

We address this problem in two ways - by limiting t to some fixed value tmax and by extending the
model to include Long Short Term Memory as described by Hochreiter, et. al. [3]. In the latter case
we rely heavily upon their implementation in Theano.

As noted above, our objective is to maximize the average probability of correctly labeled pairs:

1
N

N∑
i=1

yi · log ŷi

Where N is the number of question-response pairs and yi is a one-hot vector representing the true
label of the ith pair, as recorded by Mechanical Turk workers.

4 Experiment

We trained our RNN classifier using question-response pairs from ten online forums. We examine
the classification accuracy as a function of tmax (the maximum number of tokens of the questionr-
response pair taken into account) and iteration number.

We also examine the words that give rise to maximal neuronal activation for the non-answer classi-
fication label.

4.1 Training Data

Our training data consists of question-response pairs from forum threads. As a simple example,
consider the question, “What color is the sky?” and example responses, “The sky is blue.”, “I’m not
sure.”, “It can be either blue or gray.”, “Why don’t you just Google it?”, “I think it’s purple.” These
statements would lead to five training inputs:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

[1, 0] <Q> What color is the sky? </Q> <R> The sky is blue. </R>
[0, 1] <Q> What color is the sky? </Q> <R> I’m not sure. </R>
[1, 0] <Q> What color is the sky? </Q> <R> It can be either blue or gray. </R>
[0, 1] <Q> What color is the sky? </Q> <R> Why don’t you just Google it? </R>
[1, 0] <Q> What color is the sky? </Q> <R> I think it’s purple. </R>

The first, third and fifth responses are answers (label [1,0]) while the second and fourth responses
are non-answers (label [0,1]). The beginning and end of each question and answer are delimited
with special tokens. Note that the last response is an incorrect answer, but it still constitutes an
answer.

4.2 Data Acquisition and Preprocessing

We built a forum crawler and downloaded 59,205 question-response pairs from ten online forums.
We used Amazon Mechanical Turk to hand-label each response as an answer or a non-answer. Turk
workers were instructed to select responses that attempted to answer the question. We had two
Turk workers label each response, and kept only those responses in which both workers agreed.
We equalized the number of positively-labeled and negatively-labeled samples resulting in 27,682
question-answer pairs. We randomized the data and then split it into train (80%), dev (10%), and
test (10%) sets. The data is summarized in the table below.

Percentage of total data set Number of question-answer pairs
Train 80 22,146
Dev 10 2,768
Test 10 2,768

The data is provided as a supplemental attachment. We preprocessed the question-response pairs by
applying the following normalizations:

• Lower-case the text

• Remove all non-ASCII characters and punctuation

• Convert whitespace blocks to single spaces

• Stem words

• Remove common (e.g. stop) words

• Remove words occurring in less than 100 training samples

4.3 Evaluation Metric

We use the number of correctly classified question-response pairs from the test set as our evalua-
tion metric. We also record the words that gave rise to maximal neural activation as a qualitative
evaluation.

4.4 Results Without Memory

We initially included both the question (<Q>...</Q>) and the response (<R>...</R>), but early
experiments showed that the response alone was sufficient to classify it as a non-answer. We hypoth-
esize reasons for this in the discussion. We also found that our model lost memory after tmax = 5
recursive steps (Figure 1). Thus we train on the first five words of each response (not counting
the initial <R>). The results below are for our model without memory (i.e. no Long Term Short
Term Memory). As shown in Figure 2, the model quickly learned to classify roughly 70% of the
training samples during the first 1,000 iterations. Additional iterations saw gradual performance
improvement with a plateau around 76.3%.

In order to qualitatively evaluate the trained model, we fed each vocabulary word into the network
as a one-word sample. Encouragingly, words that were strong non-answer features for the SVM
and LR models proved to be strong signals of non-answers in the RNN. In particular, the word
“thanks” produced the highest non-answer signal, consistent with the fact that responses starting

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 1: Tmax denotes the number of question-response tokens taken into consideration. Due to
gradient vanishing effects, we lose accuracy with Tmax > 5.

Figure 2: Accuracy as a function of training iteration for Tmax = 5. The model learned quickly
during the first thousand iterations, and then slowed.

with “thanks” are very rarely answers. A selection of non-answer words that qualitatively validate
the model are provided in the table below.

Single-Word Input Non-Answer Probability
thanks 0.83
bump 0.80

nevermind 0.77
inappropriate 0.65

Table 1: Words with high non-answer probability. Note that the first three of these single-answer
responses are typically written by the original poster. In our SVM and LR models, we include an
indicator feature that records whether or not the response was by the original poster.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4.5 Results with Memory

We attempted to include Long Short Term Memory using the Theano model by Hochreiter, et. al.
In theory, this model should have significantly improved our results because it would resolve issues
with vanishing gradients, allowing the model to read the entire question-response pair. We started
with their sentiment code as a base and attempted to modify it to train our classifier. Unfortunately,
we were not able to produce a converging model. The first few iterations produced a minor im-
provement (67% classification accuracy), but then stagnated at that value. We suspected a bug in
our implementation, but ran out of time before we could resolve it.

5 Conclusion

We previously trained a logistic regression classifier and a support vector classifier to evaluate the
feasibility of this problem. In those models, we were able to hand-select features beyond the textual
data. For example, we indicated the author of the response, the index of the response, and whether
the response was quoted by another response. The logistic classifier performed the best with a
test-set accuracy of 89.0% using 7-gram features along with several novel features.

In SVM and LR models, we found that the question contributed little to the training accuracy. This
result was confirmed by the RNN - we were able to achieve the same RNN classification accuracy
using just the response text (<R>...</R>). This suggests a general structure of non-answers to
forum questions. Our qualitative evaluation revealed that words such as, “thanks”, “bump” and
“nevermind” are strongly indicative of non-answers. Note, however, that these words are often
written by the original poster, so the post author feature may be an even stronger feature available to
the SVM and LR classifiers.

The utility of a response classifier may be demonstrated using a practical example taken from the
Apple Technical Support Discussion Forum:

My Apple TV will not connect to WiFi, having put in the pass code it displays
connection error -3905. Can anyone help?

1. I too have an ATV2...I could only get it to work properly by uninstalling my
McAfee security suite.
RNN Score: 0.21, LR Score: 0.615

2. I get the exact same problem and error code with my NetGear DG384T wireless
router; when I try to configure the Wireless network the Apple TV actually lists my
wireless SSID but fails to connect when I select it from the list.
RNN Score, 0.10, LR Score: 0.291

3. Take a chill pill, pal! Turn off MAC Address Filtering and you will instantly
get a connection. I read a post by a housewife in Australia who nailed the problem - good
on yer, Sheila!
RNN Score: 0.11, LR Score: 0.482

4. I was having the same problem with my ATV 2nd Gen. Spoke to an Apple
tech, determined that the cause of my problem was wireless interference...Apparently a
nearby wifi network was using the same channel that mine was.
RNN Score: 0.33, LR Score: 0.726

5. Thanks everyone for your help, I resolved the issue.
RNN Score: 0.052, LR Score: 0.103

The last answer turns out to be the correct answer. Notice that the 1st and 3rd posts are attempts at
answering while the 2nd post is a user who is experiencing the same issue. The last post is by the
original poster. Both the RNN classifier and the LR classifier successfully reorder these posts 4, 1,
3, 2, 5. However, the RNN does not classify any of these responses as answers (probability < 0.5),
likely because the first five tokens of each response is not sufficient to identify them as answers. We
can see the strong non-answer score of the last response, almost entirely due to the fact that it starts
with “thanks”.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

We found that the question (<Q>...</Q>) provided little insight into classifying responses as non-
answers. We hypothesize that this is because non-answers generally have a very similar structure
(e.g. they might begin with a token like “thanks” or “bump”). Since we were not looking for correct
answers, the meaning behind each question was not as important as the structure of each response.
Put simply, a response such as “Just Google it” is a non-answer to a great many questions, whereas
it is an answer to very few.

We previously developed a cross-forum search engine that uses only answers (probability > 0.5).
The search engine is available at:

http://www.gotoanswer.com

Note that this search engine relies upon the logistic regression classifier.

Our RNN did not perform as well as the SVM and LR classifiers, but there are quite a few modifica-
tions that would likely improve its performance. As a next step, we suggest reducing the question-
response space to a specific topic such as computer hardware repair. It is likely that non-answer and
answer responses within a particular subject share common structure. We saw this trend with our
SVM and LR classifiers - posts within the Apple Discussion Forum that linked to specific support
topics were answers, while the phrase “no hackintosh questions” was a common non-answer.

References

[1] David Azari, Eric Horvitz, Susan Dumais, and Eric Brill. Web-based question answering: A
decision-making perspective. In Proceedings of the Nineteenth conference on Uncertainty in
Artificial Intelligence, pages 11–19. Morgan Kaufmann Publishers Inc., 2002.

[2] Benjamin V Hanrahan, Gregorio Convertino, and Les Nelson. Modeling problem difficulty and
expertise in stackoverflow. In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work Companion, pages 91–94. ACM, 2012.

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[4] Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal Daumé III. A
neural network for factoid question answering over paragraphs. 2014.

[5] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation.

[6] Jun Suzuki, Yutaka Sasaki, and Eisaku Maeda. Svm answer selection for open-domain question
answering. In Proceedings of the 19th international conference on Computational linguistics-
Volume 1, pages 1–7. Association for Computational Linguistics, 2002.

[7] Show-Jane Yen, Yu-Chieh Wu, Jie-Chi Yang, Yue-Shi Lee, Chung-Jung Lee, and Jui-Jung Liu.
A support vector machine-based context-ranking model for question answering. Information
Sciences, 224:77–87, 2013.

7


	Introduction
	Background / Related Work
	Approach
	Model

	Experiment
	Training Data
	Data Acquisition and Preprocessing
	Evaluation Metric
	Results Without Memory
	Results with Memory

	Conclusion

