Opinion Tagging Using Deep Recurrent Nets with
GRUs

Alex Adamson Vehbi Deger Turan
Stanford University Stanford University
aadamson@stanford.edu vdturan@stanford.edu
Abstract

Opinion tagging is an important task when distinguishing features of a product or
a service in reviews, or filtering and summarizing a large body of text for personal
perspectives. We strive to attain the performance level of conditional random
fields for structural prediction of agent, attitude and target tags using neural net-
works. The models we constructed and evaluated include a softmax regression
baseline, a deep bidirectional recurrent network, and an extension using gated re-
current units instead of ReLU nonlinearities for the bidirectional RNN. For more
complicated classifications where local dependencies are not present, the GRU
model outperforms DRNN by a small margin. It is important to acknowledge that
development classification tags are not objective and debatable by human clas-
sifiers, since the subject is quite complex and above concrete syntactic features.
However, for simpler tasks such as opinion agent labels, DRNN performs signifi-
cantly better.

1 Introduction

For events in which many members of a community release statements concerning a single subject,
the volume of responses and their unstructured nature can be an obstacle to product developers,
policy makers or other interested parties getting a true sense of the attitudes of a public body. We
intend to develop an opinion tagging model using neural networks that, given a corpus of documents,
can tag sequences in the text as being expressions of an opinion (an attitude), being the holder of an
opinion (an agent), or being the target of an opinion. To limit the scope of the problem and to make
it more tractable for neural network-based classifiers, we do not plan to capture the relationships
between holders, opinions and targets (i.e. we do not plan to tag a certain sequence that is an
opinion as being held by a particular holder within some tagged holder sequence).

The fine-grained opinion mining task seeks to, given textual input, find the opinions expressed
therein, their intensity and other properties such as their holder and their target. In particular, we first
explore the fitness of a deep bidirectional recurrent network for this task using the architecture de-
scribed in Irsoy and Cardie 2014, and then attempt to extend it by using gated recurrent units instead
of ReLU units.

2 Related Work
2.1 Opinion mining

Much of the previous work in opinion mining focused on extracting subjective expressions and typi-
cally used conditional random fields for sequence tagging. Much of this work focused on developing
token- and phrase-level feature extraction (such as part-of-speech tagging and token-level sentiment
tagging). Choi et al.[2005/employed conditional random fields to jointly identify opinions and opin-
ion holders. Yang and Cardie 2013| develops a conditional random field to jointly infer opinion

expressions, opinion holders and opinion targets by adding learned relation features. Some of these
models have proved highly successful on the opinion analysis task. In particular, the joint inference
model from Yang and Cardie |[2013|achieves overlap F1 scores above 60% on the MPQA 2.0 dataset
for all classes of interest (opinion expressions, opinion holders and opinion targets).

There is prior work on recurrent neural networks on opinion mining as in Irsoy and Cardie 2014|that
is limited to discriminating null-class text from subjective expressions. We would like to extend it to
discriminate between additional opinion-related classes, such as opinion target, holder and attitude.

2.2 Recurrent neural networks

Recurrent networks have been a mainstay of deep learning for some time. The typical Elman-type
network (Elman 1990) has no depth-in-space and passes the result of the hidden layer at timestep ¢
h; to the next temporal hidden layer, h;, 1. Each layer takes as additional input a representation of
some token (x;) in a sequence, and may output a tag for the token y;. This construction is limited
for language-based tasks since typically a token’s tag can be informed by context from the future
instead of only the past.

2.2.1 Bidirectional recurrent neural networks

This observation motivates the introduction of a bidirectional variant (Schuster and Paliwal [1997)
that has at each timestep a future-informed hgden unit & and a past-informed hidden unit /. The
output y; is then typically a function of both h; and h .

2.2.2 Stacked recurrent neural networks

Another limitation of the Elman-type network is its lack of depth-in-space: the single spatial layer
restricts its ability to learn complex abstractions over the sequence. This motivates the proposal of

networks using stacked hidden units (El Hihi and Bengio [1995) where the hidden unit in layer ¢
at timestep ¢ hiz) propagates its output to its temporally next neighbor (hgf&l) and its spatially next

neighbor (h{""™).

2.2.3 Stacked bidirectional recurrent neural networks

The models we expand upon in this work are a fusion of the two extensions to Elman-type networks
introduced above. Irsoy and Cardie |2014 introduces a recurrent network with depth-in-space and
bidirectionality and applies it to subjective expression tagging.

2.3 Gated Recurrent Units

Previous proposals has been made to extend recurrent neural networks by replacing the simple non-
linearities performed by the hidden units with more complex gated functions. The intuition behind
the work has been to introduce gating in hidden units to allow them to operate at different time-
scales by selectively remembering and forgetting their state based on input signals (Hochreiter and
Schmidhuber|1997, Chung et al. 2015).

3 Methods

Here we describe the network architectures we propose for use in the opinion tagging task.

3.1 Recurrent neural network with depth in space and bidirectionality

Traditional Elman-type networks use depth in time in that they employ a single feedforward hidden
unit for each token in the input sequence.

ht = f(W.’L‘t + Vht_l + b)
yr = g(Uhy + ¢)

At each timestep, the same transformation W is applied to the input and the same transformation
V applied to the previous timestep’s output. Hence, the network all hidden representations h; must
lie in the same representation space, limiting the ability of the network to form abstractions over
previous hidden representations as they move forward in time.

Additionally, a particular hidden unit can only make use of abstract representations made over rep-
resentations of tokens from the past. In tasks in which the input sequence is textual, this is clearly
limiting because the output layer y has no information about the future context.

With these limitations in mind, we propose the use of a deep bidirectional recurrent neural network
for this task. Each layer of the network can operate in a different representation space, forming
abstract, hierarchical representations over its input (Bengio|[2009). The model architecture that used
here is taken from Irsoy and Cardie 2014; each layer computes computes its output using both
forward and backward connections using the hidden representations computed at the previous layer
as the input.

For i > 1, we have

— —(i— i 0 (i
hg) _ f(@(”) 4% D4 W(?) h(D, YO () + v @) (1)
i i V(i ;
nO = jOR Wﬁﬁ gw+v>m>+bm @
and for ¢ = 1 we have
- - -
WY = f g, 4 VO h“) +5W) (3)
B = WOz, + VORW, 4 5) @

We only connect the last layer (which we denote layer L) to the output layer:

— —
ye=g(Uh" +UnM +0) 5)

3.2 Recurrent neural network with depth in space and bidirectionality using gated
recurrent hidden units

One difficulty in the performance of recurrent neural networks is the inability to get recurrent neural
networks to encode long-term temporal interactions between tokens in the input sequence. A naive
approach has previously been employed wherein the nonlinearity between hidden units in the same
spatial layer are modified and paths are added between non-neighboring hidden units to encourage
gradients to propagate farther back than they otherwise would. Other methods such as long short-
term memory (Hochreiter and Schmidhuber|1997) have been employed to give hidden units memory
cells to store potential long-term dependencies that are then gated and used when a dependency is
deemed to exist. Recently, gated recurrent units have been proposed (Cho et al.[2014) that adaptively
remembers and forgets its state based on input signals. Chung et al.[2015|explores the usage of gated
recurrent units to allow different spatial layers (and temporal connections between spatial layers) to
operate at different time scales.

We propose a novel architecture that uses bidirectional spatial layers with gated recurrent hidden
units. Unlike the gated feedback recurrent neural network, our architecture lacks global reset gates
between consecutive time steps at different layers (or any forward propagation from higher layers to
lower layers).

Formally, the model is defined as follows:

For i > 1, we have

i N7 (i— NS (i—
7p:d@?wgw+zymgn+ﬁmy>+wm (6)
i — (T (i— — NS (i
?p:dwﬁwﬁ”+KWWE”+w>M)+w% (7)
~ ()
- =) T (i—1) <— -1
TO PO FO (1 7%off ©)
i _> i— <_ i— NNC i
O = (@Y 4 ORI 4 VO R, 4 bz0) (10)
i N7 (i— (-1
yy:dﬁngm+ﬁymg>+@mh 4 520 (11)
=) _ _
W, = FAORY L ORI 4 F0 o VORI, (12)
=@
(i i)y G NI
R =D n® +(1-F")oh, (13)
and for 7 = 1 we have
— —
ZW = o(WEWa, + VIORE D, 1 520 (14)
70 = o(Wra, + VOO, 4 5r0) (15)
=10
—= — —
Wy = fW0z,+ 70 VOTO) (16)
~O
— — -
R =2 o n) +(1-2W)oh, an
SO = o(WeWa, + V2ORD, + 520) (18)
T = o (WrWa, + VR D) 4 b)) (19)
=)
<_
Wy = f(V Dz + O VORY) (20)
=
— — —
R T E e

We only connect the last layer (which we denote layer L) to the output layer:

- —
=g "+ U R +o) (22)

For convenience, we define the h(()i) and hg,fi_l to be the zero vector for all layers .

For all experiments, we let g be the softmax function and f be ReLU and tanh for the first and
second architectures respectively.

4 Experiments

4.1 Hypotheses

We expect that that the recurrent neural networks with gated recurrent units will outperform those
without. It is unclear if either model will achieve performance comparable to those seen in the
conditional random field models. In particular, such models have access to parse trees and opinion
lexicons. Our hope is that the models we employ will learn abstractions over the input representa-
tions that will give it similar information.

4.2 Data

We use the MPQA 2.0 dataset (Wiebe, Wilson, and Cardie [2005). The dataset consists of 15737
sentences drawn from the world English-language press. Each sentence is tagged by a trained human

for features such as attitudes, attitude targets, attitude holders (agents), objective speech events, and
various subjective statements.

We separate the data into a training set consisting of 12590 sentences, a validation set consisting of
1574 sentences, and a test set consisting of 1573 sentences. During training, we evaluate the models
against the validation set during model selection.

4.3 Evaluation

We train each model to distinguish tokens of one tag from tokens of all other tokens, so for instance,
the ground truth tag for a token used during training for the model intended to distinguish opinion
expressions will be either positive or negative, positive meaning the token is part of an opinion
expression and negative meaning it is not.

To evaluate the models, we employ proportional and binary overlap. The binary overlap metric
counts all contiguous tags in a predicted sequence as correct if any part of the predicted sequence
of contiguous tags overlaps a sequence of contiguous tags with the same label in the ground truth
(Yang and Cardie [2013). Proportional overlap is the obvious metric: We count a tag as correct
if it matches the ground truth. We use these soft metrics because, as Wiebe, Wilson, and Cardie
2005 notes, human evaluators have difficulty distinguishing the boundaries of expressions. Hence,
exact overlap would be too limiting as in many cases inexact overlap is essentially correct. Recall,
precision and F1 using these metrics are reported. Model selection uses proportional overlap F1
scores to determine which trained models are “best” for a given task.

4.4 Word Vectors

To form input sequences to the first layer of the models, we map each token to the corresponding
the 300-dimensional GloVe embedding trained using the Common Crawl set (Pennington, Socher,
and Manning 2014).

4.5 Regularization

When performing model selection on either model, we employ grid search over several values (in-
cluding 0) of X for L2-regularization. We found that neither model is prone to overfitting and that
using L2-regularization was mostly useful to prevent overflow during training.

We also experiment with dropout (Hinton et al. 2012), a regularization technique that has been
used to great effect when training large neural networks to prevent learned hidden features from co-
adapting. We grid search over dropout rates of 0.0, 0.1 and 0.2 during model selection. Validation
error tended to be minimized with a dropout rate of 0.1.

4.6 Training

For the objective function, we employ the standard cross-entropy function. We use mini-batch
stochastic gradient descent with momentum and a batch size of 80. Networks are trained for 80
epochs and early termination is used. Nearly all models terminate early (i.e., the best validation
results are seen before the eightieth epoch). Every hidden layer receives a supervised error signal
from the output layer even though only the last hidden layer is connected to the output layer. With-
out adding these error signals, the networks tend to converge to output label probabilities that are
approximately the prior class probabilities.

When computing the error vector propagated back from the output layer, we multiply the element
of the vector corresponding to the ¢! timestep by a constant v < 1 if the ground truth label for
the input token at ¢ was the null class (i.e. not the tag of interest). This technique was shown
to improve performance on the expressive-subjective-expression and direct-subjective-expression
extraction task in Irsoy and Cardie|2014. Choosing v < 1 encourages the model to be more cavalier
about labelling tokens as the tag of interest; We observed that v > 0.8 led to very low recall scores
on both architectures. During model selection, we perform grid search on «y over values 0.3, 0.5 and
0.7.

5 Results

We test both architectures using four spatial layers.

5.1 DRNN vs. GRU

Model Precision Recall F1
Prop. Bin. | Prop. Bin. | Prop. Bin.
Agent | SR 0422 0.426 | 0.333 0.482 | 0.333 0.452

DRNN | 0.653 0.675 | 0.707 0.746 | 0.679 0.709
GRU 0.632 0.661 | 0.675 0.722 | 0.653 0.690
Attitude | SR 0339 0341 | 0.192 0.544 | 0.245 0.419
DRNN | 0.276 0.344 | 0.625 0.733 | 0.383 0.468
GRU 0.291 0.360 | 0.575 0.672 | 0.386 0.469
Target | SR 0.230 0.230 | 0.040 0.125 | 0.069 0.162
DRNN | 0.243 0.280 | 0.398 0.514 | 0.302 0.362
GRU 0.266 0.320 | 0.343 0.447 | 0.300 0.373

Table 1: Results for models from grid search over A, dropout rate and null-class weight. All models
have 25-dimensional hidden units and use the GloVe 300-dimensional Common Crawl embeddings.

Both architectures were able to beat the baseline softmax regression on essentially all tasks. Results
are generally as expected — the use of the GRU slightly improves performance on most tasks,
and particularly on the more difficult tasks of target extraction (binary F1 of 0.373 vs. 0.362) and
attitude extraction (binary F1 of 0.468 vs 0.469). The DRNN architecture beats the GRU architecture
by a wide margin on the agent extraction task. Agent sequences tend to be short and are typically
identifiable based on local dependencies or token-level priors, so it is expected that the DRNN
should achieve strong performance on the task, but it is unclear why the GRU architecture performed
relatively poorly.

5.2 Additional hidden units

Model Precision Recall F1

Prop. Bin. | Prop. Bin. | Prop. Bin.
Agent | DRNN | 0.669 0.690 | 0.722 0.755 | 0.695 0.721
GRU 0.625 0.656 | 0.664 0.716 | 0.644 0.685
Attitude | DRNN | 0.308 0.371 | 0.536 0.694 | 0.391 0.482
GRU 0.292 0.364 | 0.602 0.718 | 0.393 0.483
Target | DRNN | 0.265 0.294 | 0401 0.515 | 0.319 0.375
GRU 0.274 0.320 | 0.355 0472 | 0.309 0.381

Table 2: Results for models from grid search over A, dropout rate and null-class weight. All models
have 100-dimensional hidden units and use the GloVe 300-dimensional Common Crawl embed-
dings.

The same relative performance emerges when more hidden units are added, suggesting the GRU
architecture does not see marginal improvement relative to the DRNN architecture as hidden units
are added. F1 scores generally improved by about 0.10.

5.3 Qualitative comparisons

The following is an example tagging using the selected models (detailed in[5.1)) with 25 hidden units:

DRNN: “[The quickest defeat of Tsvangirai and his [MDCl;4ge: lot would come if they [chose
the path of violenceligrgetlattitude, [an analyst]ggent Who [spoke]qrger ON condition of anonymity
said.

GRU: “The [[quickest defeat of Tsvangirai and his MDC lot];,.¢e; Would come if they chose the
path of]¢45¢ude Violence,” [[an];qrger analyst]ygen: Who spoke on condition of anonymity said.

Human: “[The quickest [defeat of Tsvangirai and his MDC lot];q,ge¢ Would come if they chose the
path of violence]gititude, [an analyst],gen: Who spoke on condition of anonymity said.

Manual inspection of the models’ predictions reveals that both models in some cases performed
better than the metrics suggest. Most errors are relatively minor albeit inexplicable (such as the
GRU model labelling the token “an” as a target on an island). Additional examples reveal that many
of the models’ false positives in target extraction come from labelling small sequences as targets.

Inspection of the norms of the update matrices (the W zs) for the GRU nets suggest that the GRU
does in fact enable each layer to learn at a different time scale. The norms tended to start out around
10 at the input layer and decrease by an order of magnitude at each successive layer.

6 Conclusion

We have explored the fitness of two types of deep bidirectional recurrent neural networks, one using
GRU units in the hidden layers and one using ReL.U units in the hidden layers.

We were underwhelmed by the degree to which the GRU architecture outperformed the ReLU ar-
chitecture. Neither model managed to outperform reported scores for state-of-the-art conditional
random field models in the target extraction task (Yang and Cardie 2013), although both beat re-
ported scores in the agent extraction task by a wide margin (Yang and Cardie |[2013)).

In the future, we may explore adding global reset gates between layers as in (Chung et al.|2015) or
performing additional pretraining on the word vectors.

References

Bengio, Yoshua (2009). “Learning deep architectures for AI”. In: Foundations and trends®) in Ma-
chine Learning 2.1, pp. 1-127.

Cho, Kyunghyun et al. (2014). “Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation”. In: arXiv preprint arXiv:1406.1078.

Choi, Yejin et al. (2005). “Identifying Sources of Opinions with Conditional Random Fields and
Extraction Patterns”. In: Proceedings of the Conference on Human Language Technology and
Empirical Methods in Natural Language Processing. HLT ’05. Vancouver, British Columbia,
Canada: Association for Computational Linguistics, pp. 355-362. DOI1: |[10.3115/1220575.
1220620. URL: |http://dx.doi.org/10.3115/1220575.1220620.

Chung, Junyoung et al. (2015). “Gated Feedback Recurrent Neural Networks”. In: CoRR
abs/1502.02367. URL: http://arxiv.org/abs/1502.02367.

El Hihi, Salah and Yoshua Bengio (1995). “Hierarchical Recurrent Neural Networks for Long-Term
Dependencies.” In: NIPS. Citeseer, pp. 493-499.

Elman, Jeffrey L (1990). “Finding structure in time”. In: Cognitive science 14.2, pp. 179-211.

Hinton, Geoffrey E. et al. (2012). “Improving neural networks by preventing co-adaptation of feature
detectors”. In: CoRR abs/1207.0580. URL: http://arxiv.org/abs/1207.0580.

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). “Long short-term memory”. In: Neural computa-
tion 9.8, pp. 1735-1780.

Irsoy, Ozan and Claire Cardie (2014). “Opinion mining with deep recurrent neural networks”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 720-728.

Pennington, Jeffrey, Richard Socher, and Christopher D Manning (2014). “Glove: Global vectors for
word representation”. In: Proceedings of the Empiricial Methods in Natural Language Processing
(EMNLP 2014) 12, pp. 1532-1543.

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional recurrent neural networks”. In: Signal
Processing, IEEE Transactions on 45.11, pp. 2673-2681.

Wiebe, Janyce, Theresa Wilson, and Claire Cardie (2005). “Annotating expressions of opinions and
emotions in language”. In: Language resources and evaluation 39.2-3, pp. 165-210.

Yang, Bishan and Claire Cardie (2013). “Joint Inference for Fine-grained Opinion Extraction.” In:
ACL (1), pp. 1640-1649.

http://dx.doi.org/10.3115/1220575.1220620
http://dx.doi.org/10.3115/1220575.1220620
http://dx.doi.org/10.3115/1220575.1220620
http://arxiv.org/abs/1502.02367
http://arxiv.org/abs/1207.0580

	Introduction
	Related Work
	Opinion mining
	Recurrent neural networks
	Bidirectional recurrent neural networks
	Stacked recurrent neural networks
	Stacked bidirectional recurrent neural networks

	Gated Recurrent Units

	Methods
	Recurrent neural network with depth in space and bidirectionality
	Recurrent neural network with depth in space and bidirectionality using gated recurrent hidden units

	Experiments
	Hypotheses
	Data
	Evaluation
	Word Vectors
	Regularization
	Training

	Results
	DRNN vs. GRU
	Additional hidden units
	Qualitative comparisons

	Conclusion

