CS 224D Final Project Report - Entity Level
Sentiment Analysis for Amazon Web Reviews

Y. Ahres, N. Volk

Stanford University

Stanford, California
yahres@stanford.edu,nvolk@stanford.edu

Abstract

Aspect specific sentiment analysis for reviews is a subtask of ordinary sentiment
analysis with increasing popularity. In this work, the goal is to characterize the
sentiment of specific aspects in camera web reviews with various recurrent neural
networks that are tailored to this purpose to predict a vector of aspect sentiments
at review level: The baseline of a simple RNN is extended to a bidirectional RNN
(BRNN), a LSTM and a bidirectional LSTM (BLSTM). Furthermore, different
methods are presented and evaluated how to deal with highly biased/skewed data
which is a common problem with reviews. In particular, a novel approach using
aspect information content increasing mini-batch sampling is presented. Models
are evaluated using F1 scores.

1 Introduction

Well-known tasks for Natural Language Processing (NLP) involve general sentiment analysis for
various types of texts or speech. Such models are capable to output the general sentiment of a
sentence or piece of text. However, a special subset of tasks such as mining product reviews requires
more than high level sentiment analysis, rather it requires entity level sentiment analysis (or aspect
specific sentiment analysis) on the level of review-specific features (for instance the sentiment/score
of ’display” in a product review of a smart phone). Other applications are public opinion predictions,
opinion mining or emotion detection. In many applications, the goal is to perform this sentiment
analysis over time. This analysis can naturally be used for other tasks such as recommender systems
or summarizing tasks. [War+11]] [[Ser+15]

2 Problem statement

In order to extract entity level sentiments, Amazon reviews should be analyzed in the following way:
1- extract most important features of a product and 2- assign an overall score for each of them. This
will allow us to structure the information from thousands of reviews and add a value to the end-
customer by summarizing the reviews into a comprehensive yet concise table. The specific problem
formulation: Given a review as form of a sentence /;, identify the sentiments/scores y,_; of relevant
features/aspects a.

3 Related Work

Recent work ([[PSM14]]) introduced a new model that allows neural nets (NN) to evaluate con-
textual sentiment: The proposed Global Belief-Recursive Neural Network (RecNN) represents the
state-of-the-art for granular sentiment analysis. In order to correctly capture contextual sentiment,
a backward step from upper tree nodes is introduced here. A different approach is obtained by

considering aspect specific sentiment analysis using hierarchical deep learning according to [LSM]].
Here, separate aspect sentiment models (SAS) or Joint Multi-Aspect Sentiment models (JMAS) train
root-node-level softmax classifiers with aspect and sentiment as classificiation outputs. However, a
prelabeling of the aspects/product features is required for these models. This work should explore
different recurrent neural networks (RNN) including bi-directional recurrent NN and Long-Shert-
Term Memeory (LSTM) RNNSs that try to capture aspect specific sentiment through context.

4 Dataset

First, we used the public available data sets used in [HLOA4|] and [DLYOS]|]. The data contains reviews
about cameras on Amazon. The reviews are annotated with product feature names and the respective
sentiment. Clearly, each of these sentences has the entity reviewed and the level of sentiment about
it. Therefore the tasks we perform come down to a NER combined with sentiment analysis. After
conducting a variety of experiments we concluded that the amount of reviews is not sufficient for
our purpose. Therefore, more than 5000 reviews were labelled manually. The total data set con-
tains 7149 labelled reviews with the following aspects: Picture, Prize, Battery, Portability, Features.
Aspect sentiments are labelled on a scale from —5...5, however, for our purpose we only consider
aspect sentiments on a scale from —1 to 1: s; = —1,0, 1. We also preprocessed the publicly avail-
able data to fit the aspect mentioned into our aspect buckets. For instance, by indicating, size[+1],
we detect that they refer to portability with a positive sentiment. This involved some manual word
and sentiment translation. Please note that we are also making our datasets publicly available for
future research and projects.

Dataset split Product No. of reviews/sentences
Hu and Liu, KDD-2004 DVD Player 836
Camera 380
Camera 642
Ding, Liu and Yu, WSDM-2008 | Canon 349
Canon 229
Manually labelled SonyA3000 597
Sony W800 230
Polaroid Z2300 570
Panasonic Lumix 1297
Nikon S8100 1491
Nikon COOLPIX L830 986
Canon EOS Rebel 118
Canon PowerShot SX700 389

Figure 1: Product review dataset structure: each aspect is labeled with sentiments from —5...0...5.

5 Mathematical formulation

5.1 Simple Recurrent Neural Network (RNN)

The model that should be evaluated and deployed first and serve as a baseline is a RNN that is
tailored to our purpose: In contrast to providing an output (e.g. via softmax) for each node/word,
the model should only output a final prediction at the end of the sentence. A sketch of the model
is shown in Figure 2. In order to capture the entire context the backpropagation-through-time (bptt)
parameter was selected to always exceeds the sentence length, or in other words: the model always
considers the entire sentence content.

As explained above, for each of the 5 aspects, we have —1,0, 1, so a one-hot vector of 3 elements
for each one; —1 being the most negative, 1 the most positive and 0 neutral. Note that if a review
does not mention one aspect, it is assumed neutral towards it. Therefore, for 5 different aspects, the
prediction §j € RS,

X(T)

J Softmax l

Softmax

o W(s) f somax

Softmax

y_hat

Softmax

Figure 2: Simple RNN for aspect level sentiment analysis

For (1), 2(2)_ .. the forward propagation of this model is defined as follows:

At — U(Whh(t—l) + wa(t)) (1)

The final output for each aspect results in:

i = softmaz(Wh'=T) ()

where g is the concatenation of the single predictions for each aspect of the camera:

T is the last ¢. Clearly, we compute our sentiment only at the end and we need to learn the matrices
W, Wiy, W and L (word vectors).

The idea behind such a structure is that RNNs accumulate the sentiment over the whole sentence
and output them as shown above.

5.2 Bidirectional Recurrent Neural Network (BRNN)

A huge drawback of the standard RNN is that post-word context is not considered sufficiently as
the sentence is observed only in one direction. However, in order to determine aspect sentiment, the
direction should not matter and therefore, a bidirectional recurrent neural network is implemented:
Accumulating in two directions rather than one doubles the number of parameters and allows for
more flexibility. Here, the model runs through the sequence in reverse order with a different set of
parameters that have to be updated. A simplified sketch of the model is shown in Figure 3. Note that,
to specify the backward channel, we just need to invert the sequence of words and perform the same
RNN as we did before, on the other direction. The final softmax output is calculated concatenating
hy and hy, from both directions:

hY = o (Wi, b~ + Waal?) @
hl(;t) = U(th hl(;til) + mez('gverted))
R hy
7 = softmax(Ws prnn b +b,) (6)

5.3 Long-term Short-term Memory (LSTM-) RNN

In order to capture the context of aspects in a more granular way, a LSTM-RNN should be deployed:
Here, rather than just scanning a word sequence in order, the model stores information in gated units,

,
e\
e

x_inv(t)

Figure 3: BRNN for aspect level sentiment analysis

in particular an input gate i(*) with weight on the current cell, a forget gate f(*) to forget non-relevant
information, an output gate o(t) to specify, how relevant the current cell content is and a gate “c(¢)
for the new memory cell. For time series tasks of unknown length LSTMs are often capable of
storing and forgetting relevant/non-relevant information better than common RNNs. ¢(®) and h(*)
are final states and hidden vectors, respectively.

iV = o(Wiat + UphY))
f® = U(fo(t) + Ufh(t—l)) (8)
o) = g(W,oz + U,h=D) 9)
et = tanh(W.z® + Up4Y) (10)
¢® = fO 6 =D 4 j® o o0 (11)
Y = o® o tanh(c®) (12)
The final prediction results in:
9 = softmax(Wyh +b,) 13)

In order to avoid errors in the backpropagation and to streamline implemenation, the model was
implemented using the Python-Theano Library [Ber+10].

5.4 Bidirectional Long-term Short-term Memory (LSTM-) RNN / BLSTM-RNN

Similar to the BRNN as an improvement of a simple RNN, a bidirectional LSTM-RNN is scanning
the sequence of words in reverse order using a second set of parameters. The final output prediction
is calculated as the concatenation of the final hidden vectors from the original sequence and the
reversed sequence:

hT
g = softmax(W, (fﬁ) +by) (14)
b

Figure 4 displays the structure of the BLSTM.

x(1) x(T)

| One LSTM step l
v

‘ LSTM,

x: (1) XinulT)

inv inv!

||

“n H
\’

Yored
‘ LSTM,

Figure 4: B-LSTM-RNN (BLSTM) for aspect level sentiment analysis

6000
5000
4000
3000
2000
1000

122
o LB

Figure 5: Distribution of aspect level sentiment in the datasets

6 Implementation

The first implementation with a standard RNN performs fairly poorly. One main reason is the
following: Most reviews do not contain detectable aspects with positive/negative sentiment, and if
so, they mostly contain one or two non-neutral aspects only. Therefore, the prior distribution of our
data is very biased towards the 0-class (neutral class) as you can observe in Figure 5.

The model tends to always predict O and is not capable to predict -1 or 1. Different approaches to
deal with our biased prior distribution should be implemented and evaluated:

6.1 Method 1: Preprocessing highly biased data

A straightforward method to deal with highly biased data is sub-sample the majority class or du-
plicate minority classes. Due to our limited data, duplication is deployed in the way that each
non-trivial review is duplicated ¢-times where ¢ is the number of non-trivial aspects contained in this
review. This method directly affects the training data and can be used as a preprocessing for other
method as well. We shall test it on its own and with combinations with the other proposed methods.

6.2 Method 2: Weighted cost RNN

Another approach is to modify the cost function directly in the model: In order to overcome the
problem that the model does not predict a positive/negative sentiment, the cost in this case is multi-
plied by a weighting term w; > 1 for the non-trivial classes, and w; < 1 respectively for the O class.
The cross entropy cost function for one aspect therefore results in:

Bo = wiyilog(y:) (15)
i
with the following constraints:
wy = ws, > wi =1 (16)

Intuitively, this means that we penalize the cost function more when we miss existing sentiments. It
forces the model to look for sentiments. If the weights assigned to w; and ws are smaller then wo,

Data: Y ncandidate,Si2€,Mbatches.replacement
Result: batches
batches <+ EmptyList();
for i = 1..npgtches do
current_batch < EmptyList()
for j = 1..size do
candidates < sample_candidates(Y, ncandidate)
best + choose_best(Y, candidates, current_batch)
current_batch < current_batch + best
if replacement = False then
| discard(Y,best)
end
end
batches < batches + current_batch

end
Algorithm 1: Create Information augmented mini batches

Data: Y ,candidates,current_batch
Result: best
forall the candidate € candidates do
if de fined_entropy(current_batch + candidate) then
| entropies|candidate] < compute Entropy(current_batch + candidate)
end
else
| entropies|candidate] < 0
end
end
best < argmax(entropies)
Algorithm 2: choose_best procedure

this results in a model that predicts only zeros. On the other extreme, if w; and ws are too large
compared to wa, the neural net will always predict something and have even lower accuracy. It is up
to us to find optimal weights using cross validation and F1 scores on the dev set. The optimal weights
were found on our fastest model and kept for the rest of the evaluation, it was: w = [1.1,0.8,1.1]

6.3 Method 3: Aspect information content increasing mini-batch sampling

In this paper, we propose a novel approach to solve this problem. This heuristic approach is based on
a mini-batch gradient descent augmented with information gain. One can think about it as a way to
create rich mini batches in terms of entropy. Each minibatch is created by randomly sampling data
from the training set and use it to build a minibatch with the highest possible entropy. Entropy is the
expected value of information contained in a set. Therefore, maximizing it is likely to maximize the
information capability of each batch. The Algorithm 1 shows how we create these batches based on
the data.

As shown in Algorithm 1, we selected an arbitrary number of candidates to add the mini batch,
generally between 3 and 5. And we find the best one by choosing the one that maximizes the
entropy of the built batch. We’ve developed this algorithm, with and without replacement of the
candidates added to mini batches. However, the one with replacement seems to work better. We will
keep it from now on.

Among the challenges of the implementation we encountered, one fundamental limitation of the
entropy definition and computation. The entropy is defined as follows:

H(X) =Y P(z:)I(x;) ==Y Px;)loga(P(x;)) (17)

icC ieC

06

05+

0.4

CE Loss

0.34 PSS A
JUUUSS S

0.2+

s
01 St o ‘mewﬂ‘

\k.

0 t"\“ﬂ B e S

L o e

0 6 12 18 24 30 36

. . Epochs Epochs
M RANN_train B RNN_dev M BRNN_train Ml BRNN_dev WLSTMuain MLSTMdev MBLSTMtain MBLSTMdev

Figure 6: Cross Entropy Loss vs Epoch number

Where C defines the set of classes, here -1, 0 and 1 we have. And the probabilities are computed
using the following:
Uz

P(x;) = (18)
> 3 T

Where n; is the number of times the class (sentiment) ¢ appeared in the data, independently of the
aspect. However, when building the mini batches, we start with an empty set. Therefore, initially
all probabilities are 0 and the entropy is not defined unless all the classes are represented at least
once. To deal with this issue, we set O entropy when either one of the probabilities is zero. This will
immediately give a non-trivial advantage any candidate that would contain a sentiment that is not
yet in the batch. If none of the candidates contains the missing class, we select one randomly.

These three approaches were added and combined to our previously presented models. In the next
section, we shall compare them along with the models implemented.

7 Tweaking and Optimization of Parameters

In order to tweak and find the right parameters for our model, we divided our data sets into three
sets: a training set, a development set for cross validation and optimization and a test set that will be
used in the next section to give our final scores. In this section, we describe how we performed our
optimizations and show how the models behave depending on it. For each of the models described,
many parameters had to be tweaked. However, due to time and hardware constraint, we weren’t
able to perform a joint optimization that would have resulted in optimal setting. Instead, we chose
to fix some parameters, like the learning rate, to reasonable value and tweak the others (word vector
dimension dim,,,, number of epochs 7cpochs) jointly or marginally depending on the complexity
of the model and how much time it takes. Figure 6 shows how the BRNN and the baseline RNN
behave through the different epoch on the left and how the LSTM and BLSTM behave on the right.

Clearly, we see that from epoch 8, the models start overfitting. Therefore we stick to an epoch 8
for the rest of the evaluation. We also wanted to tweak the parameters of our novel approach but
mini-batch GD can be incredibly time consuming.

Following implementations in the course, dim,,, was selected to 100. For the LSTM, the hidden
layer dimensions dimg; were selected to be 30.

8 Results and Discussion

To evaluate the performance we use the F1-score, which is equivalent to a harmonic mean of recall
and precision and has a higher significance than one of these metrics on its own. For our multiclass
classification problem we select the macro-averaged F1-score as it gives equal weight to all classes
and therefore puts emphasis on the rare classes, too, which is our aim:

27504
F, = TiP (19)
T + pi

Zz‘Fi

Nclasses

F,acro = (20)

where 7 is the precision and p the recall. It is calculated from the local categories and then aver-
aged without considering the data distribution/weights. The micro-averaged F1 score is computed
globally:

> TP sum;TP;

obal = =N mp L oo\ obal = =< T = 21
Tolobel = S p 1) Polobel = SSUTR, 4) @1

2Mglobal Pglobal (22)

F,icro =
Tglobal + Pglobal

Table 2 shows the performance metrics of our models. Please note that in our case, the accuracy does
not reflect the overall performance. The baseline performs poorly, predicting only zeros. However,
since most of the data is composed of zeros, the accuracy and recall weighted averages are pretty
high.

Model+Extension Precision | Recall | Fl(macro) | Fl(micro)
RNN (baseline) 81.2% | 89.1% 31.0% 81.0%
RNN+Duplicate 84.3% | 89.4% 31.2% 85.5%
RNN_Weighted + Duplicate 86.5% | 89.9% 32.4% 85.6%
BRNN 85.3% | 90.1% 34.9% 86.3%
BRNN+Duplicate 85.7% | 89.5% 41.2% 87.3%
BRNN_Weighted + Duplicate 89.9% | 90.5% 42.2% 87.5%
BRNN-+mini-batches 90.8% | 90.8% 46 % 90.87 %
BRNN_Weighted+mini-batches 86.1% | 89.9% 36.7% 87.1%
LSTM+Duplicate 81.2% | 89.9% 32.2% 90.4%
LSTM_Weighted+Duplicate 83.3% | 89.3% 34.4% 89.7%
LSTM-+mini-batches 84.3% | 82.4% 39.0% 83.1%
LSTM_Weighted+mini-batches 84.1% | 85.5% 38.2% 86.2%
BLSTM+Duplicate 81.2% | 89.9% 32.2% 90.4%
BLSTM_Weighted+Duplicate 81.9% | 88.6% 32.2% 89.2%
BLSTM-+mini-batches 83.7% | 87.6% 36.5% 88.3%
BLSTM_Weighted+mini-batches 83.9% | 83.7% 38.3% 84,4%

Figure 7: Results of different models using the strategies described in Section 8

The basic LSTM and BLSTM perform very similarly poor as the baseline RNN. As we can see from
the table, the BRNN combined with our novel approach based on augmented mini-batches performs
the best in all metrics. Intuitively, one can think of it as the best way to overcome biased distribution
in our case given the lack of flexibility and the very high bias we suffered from.

9 Conclusion

In this paper, we compared various approaches to tackle entity-level sentiment analysis. Among
the challenges we encountered: the lack of high quality-labeled data online forced us to label our
own based on Amazon reviews; we implemented various extensions to overcome the highly biased
distribution including a novel method based on information gain. This method, combined with a
bidirectional recurrent neural network outperformed all the other models we implemented. This is
very promising for this entropy based method and extensive experiments will be made to evaluate
its efficiency for broader applications. Note that an interactive portfolio has been implemented to
explore our work and results. It can be found at:

https://frozen-caverns-5581.herokuapp.com
And the code can be found at:
https://github.com/youssefahres/EntitySentiment

Please note that the data labeled will be made available online for the Stanford community and upon
request for non-Stanford affiliates.

References

[HLO4]

[DLYOS]

[Ber+10]

[War+11]

[PSM14]

[Ser+15]

[LSM]

Minqging Hu and Bing Liu. “Mining and summarizing customer reviews”. In: Proceed-
ings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM. 2004, pp. 168-177.

Xiaowen Ding, Bing Liu, and Philip S Yu. “A holistic lexicon-based approach to opinion
mining”. In: Proceedings of the 2008 International Conference on Web Search and Data
Mining. ACM. 2008, pp. 231-240.

James Bergstra et al. “Theano: A CPU and GPU math compiler in Python”. In: Proc.
9th Python in Science Conf. 2010, pp. 1-7.

Charles B Ward et al. “Empath: A framework for evaluating entity-level sentiment anal-
ysis”. In: Emerging Technologies for a Smarter World (CEWIT), 2011 8th International
Conference & Expo on. IEEE. 2011, pp. 1-6.

Romain Paulus, Richard Socher, and Christopher D Manning. “Global Belief Recur-
sive Neural Networks”. In: Advances in Neural Information Processing Systems. 2014,
pp. 2888-2896.

Jesus Serrano-Guerrero et al. “Sentiment analysis: A review and comparative analysis
of web services”. In: Information Sciences 311 (2015), pp. 18-38.

Himabindu Lakkaraju, Richard Socher, and Chris Manning. “Aspect Specific Sentiment
Analysis using Hierarchical Deep Learning”. In: ().

	Introduction
	Problem statement
	Related Work
	Dataset
	Mathematical formulation
	Simple Recurrent Neural Network (RNN)
	Bidirectional Recurrent Neural Network (BRNN)
	Long-term Short-term Memory (LSTM-) RNN
	Bidirectional Long-term Short-term Memory (LSTM-) RNN / BLSTM-RNN

	Implementation
	Method 1: Preprocessing highly biased data
	Method 2: Weighted cost RNN
	Method 3: Aspect information content increasing mini-batch sampling

	Tweaking and Optimization of Parameters
	Results and Discussion
	Conclusion

