
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CS 224D Final Project Report - Entity Level
Sentiment Analysis for Amazon Web Reviews

Y. Ahres, N. Volk
Stanford University
Stanford, California

yahres@stanford.edu,nvolk@stanford.edu

Abstract

Aspect specific sentiment analysis for reviews is a subtask of ordinary sentiment
analysis with increasing popularity. In this work, the goal is to characterize the
sentiment of specific aspects in camera web reviews with various recurrent neural
networks that are tailored to this purpose to predict a vector of aspect sentiments
at review level: The baseline of a simple RNN is extended to a bidirectional RNN
(BRNN), a LSTM and a bidirectional LSTM (BLSTM). Furthermore, different
methods are presented and evaluated how to deal with highly biased/skewed data
which is a common problem with reviews. In particular, a novel approach using
aspect information content increasing mini-batch sampling is presented. Models
are evaluated using F1 scores.

1 Introduction

Well-known tasks for Natural Language Processing (NLP) involve general sentiment analysis for
various types of texts or speech. Such models are capable to output the general sentiment of a
sentence or piece of text. However, a special subset of tasks such as mining product reviews requires
more than high level sentiment analysis, rather it requires entity level sentiment analysis (or aspect
specific sentiment analysis) on the level of review-specific features (for instance the sentiment/score
of ”display” in a product review of a smart phone). Other applications are public opinion predictions,
opinion mining or emotion detection. In many applications, the goal is to perform this sentiment
analysis over time. This analysis can naturally be used for other tasks such as recommender systems
or summarizing tasks. [War+11] [Ser+15]

2 Problem statement

In order to extract entity level sentiments, Amazon reviews should be analyzed in the following way:
1- extract most important features of a product and 2- assign an overall score for each of them. This
will allow us to structure the information from thousands of reviews and add a value to the end-
customer by summarizing the reviews into a comprehensive yet concise table. The specific problem
formulation: Given a review as form of a sentence li, identify the sentiments/scores ya,i of relevant
features/aspects a.

3 Related Work

Recent work ([PSM14]) introduced a new model that allows neural nets (NN) to evaluate con-
textual sentiment: The proposed Global Belief-Recursive Neural Network (RecNN) represents the
state-of-the-art for granular sentiment analysis. In order to correctly capture contextual sentiment,
a backward step from upper tree nodes is introduced here. A different approach is obtained by

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

considering aspect specific sentiment analysis using hierarchical deep learning according to [LSM].
Here, separate aspect sentiment models (SAS) or Joint Multi-Aspect Sentiment models (JMAS) train
root-node-level softmax classifiers with aspect and sentiment as classificiation outputs. However, a
prelabeling of the aspects/product features is required for these models. This work should explore
different recurrent neural networks (RNN) including bi-directional recurrent NN and Long-Shert-
Term Memeory (LSTM) RNNs that try to capture aspect specific sentiment through context.

4 Dataset

First, we used the public available data sets used in [HL04] and [DLY08]. The data contains reviews
about cameras on Amazon. The reviews are annotated with product feature names and the respective
sentiment. Clearly, each of these sentences has the entity reviewed and the level of sentiment about
it. Therefore the tasks we perform come down to a NER combined with sentiment analysis. After
conducting a variety of experiments we concluded that the amount of reviews is not sufficient for
our purpose. Therefore, more than 5000 reviews were labelled manually. The total data set con-
tains 7149 labelled reviews with the following aspects: Picture, Prize, Battery, Portability, Features.
Aspect sentiments are labelled on a scale from −5...5, however, for our purpose we only consider
aspect sentiments on a scale from −1 to 1: si = −1, 0, 1. We also preprocessed the publicly avail-
able data to fit the aspect mentioned into our aspect buckets. For instance, by indicating, size[+1],
we detect that they refer to portability with a positive sentiment. This involved some manual word
and sentiment translation. Please note that we are also making our datasets publicly available for
future research and projects.

Dataset split Product No. of reviews/sentences
Hu and Liu, KDD-2004 DVD Player 836

Camera 380
Camera 642

Ding, Liu and Yu, WSDM-2008 Canon 349
Canon 229

Manually labelled SonyA3000 597
Sony W800 230
Polaroid Z2300 570
Panasonic Lumix 1297
Nikon S8100 1491
Nikon COOLPIX L830 986
Canon EOS Rebel 118
Canon PowerShot SX700 389

Figure 1: Product review dataset structure: each aspect is labeled with sentiments from −5...0...5.

5 Mathematical formulation

5.1 Simple Recurrent Neural Network (RNN)

The model that should be evaluated and deployed first and serve as a baseline is a RNN that is
tailored to our purpose: In contrast to providing an output (e.g. via softmax) for each node/word,
the model should only output a final prediction at the end of the sentence. A sketch of the model
is shown in Figure 2. In order to capture the entire context the backpropagation-through-time (bptt)
parameter was selected to always exceeds the sentence length, or in other words: the model always
considers the entire sentence content.

As explained above, for each of the 5 aspects, we have −1, 0, 1, so a one-hot vector of 3 elements
for each one; −1 being the most negative, 1 the most positive and 0 neutral. Note that if a review
does not mention one aspect, it is assumed neutral towards it. Therefore, for 5 different aspects, the
prediction ŷ ∈ R15.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 2: Simple RNN for aspect level sentiment analysis

For x(1), x(2), ... the forward propagation of this model is defined as follows:

h(t) = σ(Whh
(t−1) +Wxx

(t)) (1)

The final output for each aspect results in:

ŷ = softmax(Wsh
t=T ) (2)

where ŷ is the concatenation of the single predictions for each aspect of the camera:

ŷ =


ŷ1
ŷ2
ŷ3
ŷ4
ŷ5

 (3)

T is the last t. Clearly, we compute our sentiment only at the end and we need to learn the matrices
Wx, Wh, Ws and L (word vectors).

The idea behind such a structure is that RNNs accumulate the sentiment over the whole sentence
and output them as shown above.

5.2 Bidirectional Recurrent Neural Network (BRNN)

A huge drawback of the standard RNN is that post-word context is not considered sufficiently as
the sentence is observed only in one direction. However, in order to determine aspect sentiment, the
direction should not matter and therefore, a bidirectional recurrent neural network is implemented:
Accumulating in two directions rather than one doubles the number of parameters and allows for
more flexibility. Here, the model runs through the sequence in reverse order with a different set of
parameters that have to be updated. A simplified sketch of the model is shown in Figure 3. Note that,
to specify the backward channel, we just need to invert the sequence of words and perform the same
RNN as we did before, on the other direction. The final softmax output is calculated concatenating
hf and hb from both directions:

h
(t)
f = σ(Whf

h
(t−1)
f +Wxx

(t)) (4)

h
(t)
b = σ(Whb

h
(t−1)
b +Wxx

(t)
inverted) (5)

ŷ = softmax(Ws,brnn

(
hf
hb

)
+ bs) (6)

5.3 Long-term Short-term Memory (LSTM-) RNN

In order to capture the context of aspects in a more granular way, a LSTM-RNN should be deployed:
Here, rather than just scanning a word sequence in order, the model stores information in gated units,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 3: BRNN for aspect level sentiment analysis

in particular an input gate i(t) with weight on the current cell, a forget gate f (t) to forget non-relevant
information, an output gate o(t) to specify, how relevant the current cell content is and a gate ˜c(t)
for the new memory cell. For time series tasks of unknown length LSTMs are often capable of
storing and forgetting relevant/non-relevant information better than common RNNs. c(t) and h(t)
are final states and hidden vectors, respectively.

i(t) = σ(Wix
t + Uhh

(t−1)) (7)

f (t) = σ(Wfx
(t) + Ufh

(t−1)) (8)

o(t) = σ(Wox
(t) + Uoh

(t−1)) (9)

˜c(t) = tanh(Wcx
(t) + Uch

(t−1)) (10)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ ˜c(t) (11)

h(t) = o(t) ◦ tanh(c(t)) (12)

The final prediction results in:

ŷ = softmax(Wyh+ by) (13)

In order to avoid errors in the backpropagation and to streamline implemenation, the model was
implemented using the Python-Theano Library [Ber+10].

5.4 Bidirectional Long-term Short-term Memory (LSTM-) RNN / BLSTM-RNN

Similar to the BRNN as an improvement of a simple RNN, a bidirectional LSTM-RNN is scanning
the sequence of words in reverse order using a second set of parameters. The final output prediction
is calculated as the concatenation of the final hidden vectors from the original sequence and the
reversed sequence:

ŷ = softmax(Wy

(
hTf
hTb

)
+ by) (14)

Figure 4 displays the structure of the BLSTM.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 4: B-LSTM-RNN (BLSTM) for aspect level sentiment analysis

Figure 5: Distribution of aspect level sentiment in the datasets

6 Implementation

The first implementation with a standard RNN performs fairly poorly. One main reason is the
following: Most reviews do not contain detectable aspects with positive/negative sentiment, and if
so, they mostly contain one or two non-neutral aspects only. Therefore, the prior distribution of our
data is very biased towards the 0-class (neutral class) as you can observe in Figure 5.

The model tends to always predict 0 and is not capable to predict -1 or 1. Different approaches to
deal with our biased prior distribution should be implemented and evaluated:

6.1 Method 1: Preprocessing highly biased data

A straightforward method to deal with highly biased data is sub-sample the majority class or du-
plicate minority classes. Due to our limited data, duplication is deployed in the way that each
non-trivial review is duplicated i-times where i is the number of non-trivial aspects contained in this
review. This method directly affects the training data and can be used as a preprocessing for other
method as well. We shall test it on its own and with combinations with the other proposed methods.

6.2 Method 2: Weighted cost RNN

Another approach is to modify the cost function directly in the model: In order to overcome the
problem that the model does not predict a positive/negative sentiment, the cost in this case is multi-
plied by a weighting term wi > 1 for the non-trivial classes, and wi < 1 respectively for the 0 class.
The cross entropy cost function for one aspect therefore results in:

Ea =
∑
i

wiyilog(ŷi) (15)

with the following constraints:

w1 = w3,
∑
i

wi = 1 (16)

Intuitively, this means that we penalize the cost function more when we miss existing sentiments. It
forces the model to look for sentiments. If the weights assigned to w1 and w3 are smaller then w2,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Data: Y ,ncandidate,size,nbatches,replacement
Result: batches
batches← EmptyList();
for i = 1..nbatches do

current batch← EmptyList()
for j = 1..size do

candidates← sample candidates(Y, ncandidate)
best← choose best(Y, candidates, current batch)
current batch← current batch+ best
if replacement = False then

discard(Y, best)
end

end
batches← batches+ current batch

end
Algorithm 1: Create Information augmented mini batches

Data: Y ,candidates,current batch
Result: best
forall the candidate ∈ candidates do

if defined entropy(current batch+ candidate) then
entropies[candidate]← computeEntropy(current batch+ candidate)

end
else

entropies[candidate]← 0
end

end
best← argmax(entropies)

Algorithm 2: choose best procedure

this results in a model that predicts only zeros. On the other extreme, if w1 and w3 are too large
compared to w2, the neural net will always predict something and have even lower accuracy. It is up
to us to find optimal weights using cross validation and F1 scores on the dev set. The optimal weights
were found on our fastest model and kept for the rest of the evaluation, it was: w = [1.1, 0.8, 1.1]

6.3 Method 3: Aspect information content increasing mini-batch sampling

In this paper, we propose a novel approach to solve this problem. This heuristic approach is based on
a mini-batch gradient descent augmented with information gain. One can think about it as a way to
create rich mini batches in terms of entropy. Each minibatch is created by randomly sampling data
from the training set and use it to build a minibatch with the highest possible entropy. Entropy is the
expected value of information contained in a set. Therefore, maximizing it is likely to maximize the
information capability of each batch. The Algorithm 1 shows how we create these batches based on
the data.

As shown in Algorithm 1, we selected an arbitrary number of candidates to add the mini batch,
generally between 3 and 5. And we find the best one by choosing the one that maximizes the
entropy of the built batch. We’ve developed this algorithm, with and without replacement of the
candidates added to mini batches. However, the one with replacement seems to work better. We will
keep it from now on.

Among the challenges of the implementation we encountered, one fundamental limitation of the
entropy definition and computation. The entropy is defined as follows:

H(X) =
∑
i∈C

P (xi)I(xi) = −
∑
i∈C

P (xi)log2(P (xi)) (17)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 6: Cross Entropy Loss vs Epoch number

Where C defines the set of classes, here -1, 0 and 1 we have. And the probabilities are computed
using the following:

P (xi) =
ni∑
j nj

(18)

Where ni is the number of times the class (sentiment) i appeared in the data, independently of the
aspect. However, when building the mini batches, we start with an empty set. Therefore, initially
all probabilities are 0 and the entropy is not defined unless all the classes are represented at least
once. To deal with this issue, we set 0 entropy when either one of the probabilities is zero. This will
immediately give a non-trivial advantage any candidate that would contain a sentiment that is not
yet in the batch. If none of the candidates contains the missing class, we select one randomly.

These three approaches were added and combined to our previously presented models. In the next
section, we shall compare them along with the models implemented.

7 Tweaking and Optimization of Parameters

In order to tweak and find the right parameters for our model, we divided our data sets into three
sets: a training set, a development set for cross validation and optimization and a test set that will be
used in the next section to give our final scores. In this section, we describe how we performed our
optimizations and show how the models behave depending on it. For each of the models described,
many parameters had to be tweaked. However, due to time and hardware constraint, we weren’t
able to perform a joint optimization that would have resulted in optimal setting. Instead, we chose
to fix some parameters, like the learning rate, to reasonable value and tweak the others (word vector
dimension dimwv , number of epochs nepochs) jointly or marginally depending on the complexity
of the model and how much time it takes. Figure 6 shows how the BRNN and the baseline RNN
behave through the different epoch on the left and how the LSTM and BLSTM behave on the right.

Clearly, we see that from epoch 8, the models start overfitting. Therefore we stick to an epoch 8
for the rest of the evaluation. We also wanted to tweak the parameters of our novel approach but
mini-batch GD can be incredibly time consuming.

Following implementations in the course, dimwv was selected to 100. For the LSTM, the hidden
layer dimensions dimdl were selected to be 30.

8 Results and Discussion

To evaluate the performance we use the F1-score, which is equivalent to a harmonic mean of recall
and precision and has a higher significance than one of these metrics on its own. For our multiclass
classification problem we select the macro-averaged F1-score as it gives equal weight to all classes
and therefore puts emphasis on the rare classes, too, which is our aim:

Fi =
2πiρi
πi + ρi

(19)

Fmacro =

∑
i Fi

nclasses
(20)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

where π is the precision and ρ the recall. It is calculated from the local categories and then aver-
aged without considering the data distribution/weights. The micro-averaged F1 score is computed
globally:

πglobal =

∑
i TPi∑

i(TPi + FPi)
, ρglobal =

sumiTPi∑
i(TPi + FNi)

(21)

Fmicro =
2πglobalρglobal
πglobal + ρglobal

(22)

Table 2 shows the performance metrics of our models. Please note that in our case, the accuracy does
not reflect the overall performance. The baseline performs poorly, predicting only zeros. However,
since most of the data is composed of zeros, the accuracy and recall weighted averages are pretty
high.

Model+Extension Precision Recall F1(macro) F1(micro)
RNN (baseline) 81.2% 89.1% 31.0% 81.0%
RNN+Duplicate 84.3% 89.4% 31.2% 85.5%
RNN Weighted + Duplicate 86.5% 89.9% 32.4% 85.6%
BRNN 85.3% 90.1% 34.9% 86.3%
BRNN+Duplicate 85.7% 89.5% 41.2% 87.3%
BRNN Weighted + Duplicate 89.9% 90.5% 42.2% 87.5%
BRNN+mini-batches 90.8% 90.8% 46% 90.87%
BRNN Weighted+mini-batches 86.1% 89.9% 36.7% 87.1%
LSTM+Duplicate 81.2% 89.9% 32.2% 90.4%
LSTM Weighted+Duplicate 83.3% 89.3% 34.4% 89.7%
LSTM+mini-batches 84.3% 82.4% 39.0% 83.1%
LSTM Weighted+mini-batches 84.1% 85.5% 38.2% 86.2%
BLSTM+Duplicate 81.2% 89.9% 32.2% 90.4%
BLSTM Weighted+Duplicate 81.9% 88.6% 32.2% 89.2%
BLSTM+mini-batches 83.7% 87.6% 36.5% 88.3%
BLSTM Weighted+mini-batches 83.9% 83.7% 38.3% 84,4%

Figure 7: Results of different models using the strategies described in Section 8

The basic LSTM and BLSTM perform very similarly poor as the baseline RNN. As we can see from
the table, the BRNN combined with our novel approach based on augmented mini-batches performs
the best in all metrics. Intuitively, one can think of it as the best way to overcome biased distribution
in our case given the lack of flexibility and the very high bias we suffered from.

9 Conclusion

In this paper, we compared various approaches to tackle entity-level sentiment analysis. Among
the challenges we encountered: the lack of high quality-labeled data online forced us to label our
own based on Amazon reviews; we implemented various extensions to overcome the highly biased
distribution including a novel method based on information gain. This method, combined with a
bidirectional recurrent neural network outperformed all the other models we implemented. This is
very promising for this entropy based method and extensive experiments will be made to evaluate
its efficiency for broader applications. Note that an interactive portfolio has been implemented to
explore our work and results. It can be found at:

https://frozen-caverns-5581.herokuapp.com

And the code can be found at:

https://github.com/youssefahres/EntitySentiment

Please note that the data labeled will be made available online for the Stanford community and upon
request for non-Stanford affiliates.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

References

[HL04] Minqing Hu and Bing Liu. “Mining and summarizing customer reviews”. In: Proceed-
ings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM. 2004, pp. 168–177.

[DLY08] Xiaowen Ding, Bing Liu, and Philip S Yu. “A holistic lexicon-based approach to opinion
mining”. In: Proceedings of the 2008 International Conference on Web Search and Data
Mining. ACM. 2008, pp. 231–240.

[Ber+10] James Bergstra et al. “Theano: A CPU and GPU math compiler in Python”. In: Proc.
9th Python in Science Conf. 2010, pp. 1–7.

[War+11] Charles B Ward et al. “Empath: A framework for evaluating entity-level sentiment anal-
ysis”. In: Emerging Technologies for a Smarter World (CEWIT), 2011 8th International
Conference & Expo on. IEEE. 2011, pp. 1–6.

[PSM14] Romain Paulus, Richard Socher, and Christopher D Manning. “Global Belief Recur-
sive Neural Networks”. In: Advances in Neural Information Processing Systems. 2014,
pp. 2888–2896.

[Ser+15] Jesus Serrano-Guerrero et al. “Sentiment analysis: A review and comparative analysis
of web services”. In: Information Sciences 311 (2015), pp. 18–38.

[LSM] Himabindu Lakkaraju, Richard Socher, and Chris Manning. “Aspect Specific Sentiment
Analysis using Hierarchical Deep Learning”. In: ().

9


	Introduction
	Problem statement
	Related Work
	Dataset
	Mathematical formulation
	Simple Recurrent Neural Network (RNN)
	Bidirectional Recurrent Neural Network (BRNN)
	Long-term Short-term Memory (LSTM-) RNN
	Bidirectional Long-term Short-term Memory (LSTM-) RNN / BLSTM-RNN

	Implementation
	Method 1: Preprocessing highly biased data
	Method 2: Weighted cost RNN
	Method 3: Aspect information content increasing mini-batch sampling

	Tweaking and Optimization of Parameters
	Results and Discussion
	Conclusion

