
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MT using RNNs enriched with Universal
Dependencies

Anonymous Author(s)
Affiliation
Address
email

Abstract

Sutskever et al. (2014) popularized a simple NN model for machine translation
that encodes a sentence of the target language into a vector space with an LSTM,
then decodes the vector into a sentence of the target language with another one.
This paper explores the effect of replacing the LSTMs with GRUs, and whether
augmenting the input word vectors with dependency labels from improves perfor-
mance. It finds that GRUs optimized for speed substantially outperform LSTMs
with the same number of parameters and identical optimization. The dependency
information seems to help the GRUs, but less so with the LSTMs, possibly owing
to the reduced hidden state size of the LSTMs.

1 Introduction

The machine translation system used by Sutskever et al. (2014) was able to achieve impressive per-
formance on the task of English-French machine translation by encoding a reversed source sentence
into a vector space using an LSTM network (Hochreiter and Schmidhuber, 1997) and then decoding
it into the target language using another LSTM. However, it was not able to outperform the state-of-
the-art phrase-based system (Durrani et al., 2013), and it required a total of 1.9 billion parameters
(five LSTMs with 384M parameters each). This raises two questions: can we build a similar model
that works better? and can we build a smaller model that works as well?.

The simple RNN 1 they use had no access to syntactic information that it couldn’t induce from
the sentence string. Thus one strategy for improving performance would be to enrich the model
with syntactic knowledge. A basic step would be to pretrain the word vectors using the word2vec
(Mikolov et al., 2013) or GloVe (Pennington et al., 2014) models, as these models generally encode
some information about a word’s part of speech. However, part of speech information is extremely
shallow; for machine translation, it would be more useful to know the functional role that a word
or phrase plays in the source sentence. This is exactly the kind of information encoded in the de-
pendency labels in the Universal Dependencies (UD) project (Agić et al., 2015); so indicating to
the model that a verb is the root of the sentence (root) as opposed to an adverbial clause (advcl)
or some kind of aside (parataxis) might help it determine the correct translation of the sentence.
Because the goal of UD is to develop a cross-linguistically applicable tagset, rather than tying the
annotation scheme to a particular language, there are currently 18 languages with UD annotations
that could be used to train a dependency parser, making it an appealing source of dependency infor-
mation for an MT task.

1Throughout this paper, the abbreviation ‘RNN’ will be used to mean recurrent NN as opposed to recursive
NN

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

The cononical RNN2 calculates the value of its hidden state(s) from two sources–the input from
a previous layer (possibly an input layer) and the activation from a previous timestep. Thus to
compute the value of a 100-dimensional hidden state from a 50-dimensional input, an RNN requires
1002 + 100 × 50 = 15000 parameters. The canonical LSTM, by contrast, uses three “gates” to
condition the value of the layer’s output–an input gate, a forget gate, and an output gate–where the
value for each vector of gates is computed from three sources–the input, the previous output, and
the value of the unit (i.e. the value before the output gate activates). Thus to compute the output of
a 100-dimensional LSTM layer from a 50-dimensional input, an LSTM requires 3(1002 + 1002 +
100× 50)+ (1002 + 100× 50) = 90000 parameters. Finally, gated recurrent unit (GRU) networks
(Cho et al., 2014) are comparable to LSTMs, but use only two gates (an update gate and a reset
gate) without a cell state used to determine the values of the gates; consequently, a GRU for the
same task would require 2(1002 + 100× 50)+ (1002 + 100× 50) = 45000 parameters. While all
three models use O(nm+m2), in some difficult tasks (such as MT) the bound on the number of
parameters set by available memory could actually limit the model’s performance (by preventing
larger models from being built and by blocking more memory-intensive optimization algorithms).
It is therefore important to make sure every parameter in the model is actually making a valuable
predictive contribution.

2 The Models

Due to limitations on time and computational resources3, only four small models were trained.
All use word vectors pretrained with GloVe; two models use 200-dimensional vectors with no de-
pendency augmentation, and two models use 150-dimensional word vectors and 50-dimensional,
randomly initialized dependency vectors. At each timestep for the latter, the input word’s vector
and the input dependency label’s vector are concatenated together and fed into the network, giving
the model slightly more syntactic information about the word’s role in the sentence but reducing the
amount of semantic information it has.

Because Sutskever et al. noted that deeper networks noticeably improved performance, the models
here all use two hidden layers. Two models use the GRU architecture and two use the LSTM one—
however, all have the same number of parameters per layer. The LSTMs and GRUs were optimized
for speed by modifying their structure to allow the computation to be done with only one dot product.
For the LSTM this paper follows the approach to LSTMs on the Theano (Bergstra et al., 2010)
webpage (as they were coded using Theano) in removing the dependence on the current/previous
hidden state (which also decreased the number of parameters needed per output hidden node); for
the GRU this only means changing the reset gate into an LSTM-style forget gate. The modifications
to the structure are shown in Figure 1. In order to keep the number of parameters consistent across
models, the GRUs had hidden sizes of 200 nodes whereas the LSTMs had hidden layers of 150,
giving both of them the same number of parameters as a basic RNN with hidden size 600 (i.e.
6002 +200×600 = 480000 for the first layer and 6002 +6002 = 720000 for the second).

Following the insights of Le et al. (2015), all matrices (here including standard, non-recurrent weight
matrices) are initialized with nonzero values along the diagonal only. Because the network was fairly
small, it could be optimized using AdaDelta (Zeiler, 2012), which in practice converges much faster
than stochastic gradient descent and is less sensitive to hyperparameters than Nesterov’s accelerated
gradient (Nesterov, 1983) Finally, the output layer was non-recurrent, and used a softmax classifier
to predict the next word in the sequence (this layer is only relevant for the decoder RNN, of course).

3 Data

Since the scope of this project is very limited, only English to French translation has been attempted
so far. But because UD has data in a lot of European languages (none of it parallel, unfortunately), it
seemed very forward-thinking to use a corpus with a lot of parallel languages; consequently, the data
come from Europarl (Koehn, 2005). However, the Europarl corpus is very “raw”, and demanded

2Throughout this paper, the abbreviation ‘RNN’ will be used to mean recurrent NN as opposed to recursive
NN

3I didn’t want to hog the NLP cluster during finals week

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

x i c

f

o h
Original LSTM Optimized LSTM
it = sig(Wixt +Uiht−1 +Vict−1) it = sig(Wixt +Uiht−1)
ft = sig

(
Wf xt +U f ht−1 +Vf ct−1

)
ft = sig

(
Wf xt +U f ht−1

)
ot = sig(Woxt +Uoht−1 +Voct) ot = sig(Woxt +Uoht−1)

(a) Modifications to the LSTMs used in this paper

x z h

r

Original GRU Optimized GRU
h̃t = tanh(Wxt +U (rt �ht−1)) h̃t = tanh(Wxt +Uht−1)
ht = (1− zt)�ht−1 + z� h̃t ht = (1− zt)� rt �ht−1 + zt h̃t

(b) Modifications to the GRUs used in this paper

Figure 1: This paper modifies the gated architectures so that they depend only on the input and the
previous hidden output, allowing a single dot product to calculate all the vectors needed for the final
output

a considerable amount of pre-processing. First it had to be properly aligned, with sections not
common to both languages removed; then it had to be tokenized, which was done with hand-crafted
rules (to make sure the treatment of French contractions was handled consistently); then the data
was POS tagged using nltk’s HMM POS tagger (Bird et al., 2009), which was trained on the UD
POS tags; then the POS-tagged data was parsed using MaltParser (Nivre et al., 2007; Ballesteros
and Nivre, 2012), also trained on the UD data. The resulting corpus consists of 328,118 sequences,
with 27,508,979 words in the English corpus and 31,267,702 in the French one. This means that
the average English sequence has 84 words, and the average French sequence has 95—these are
relatively long sequences for the model to learn. Additionally, the POS tagger and dependency
parser were far from perfect, introducing considerable noise into the dependency labeling. To save
memory, and hopefully reduce some noise from capitalization, the words of both languages were
converted to lower case, resulting in vocabularies of size 32,058 types for English and 42,635 for
French.

4 Results

While iterating through the entire dataset was impossible due to the time limitations, all models were
able to see about 8600 training pairs (in 215 minibatches of 40) over the course of about 36 hours,
at a rate of about 12 words/sec. This is extremely slow; part of the reason is undoubtedly because
it was not GPU accelerated, part because the machine used to do the computations for the GRUs
was accidentally overloaded, but part of it may have to do with an inefficient implementation.4 The
training cost is shown in Figure 2.

The most apparent trend between the models in the graph is that the optimized LSTMs described
in Figure 1 perform much worse than the optimized GRUs, in spite of having the same number of
parameters. This indicates that the LSTMs aren’t using their parameters as efficiently as the GRUs;
since the biggest difference between the GRUs and the LSTMs are the presence of an output gate
in the LSTMs (as both have a gate for their input and their hidden layer), it seems likely that this
may be the source of the inefficiency, and that substituting the output gate with a larger hidden
layer may provide better gains. The second most apparent trend in the graph is that after about
100 minibatches, the GRU augmented with dependency labels starts consistently outperforming the

4I’m not sure, but I may have had the program update the entire library at each computation rather than just
the words that were used in the computation. . .

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: Training cost of the model according to minibatch (slightly smoothed for readability)

GRU without them, suggesting that even this small syntactic enrichment of the model may lead to
appreciable gains, especially with a larger network and more training.

At this point, I would like to examine translations that the models make, in particular comparing the
GRU without dependency augmentation to the GRU with dependency augmentation, to see whether
the slight increase in training performance is matched by a slight improvement in the quality of the
produced sentences. I would also like to show heatmaps of the weight matrices connecting the input
layer to the first hidden layer, in order to see whether the part of the weight matrix corresponding to
the dependency label is “hot”, and if so, which labels are generally the hottest (indicating more valu-
able contribution to the resulting translations). Unfortunately, I can’t yet—something seems to have
gone wrong at the last minute. The first pickled save states from each network (generated after the
first four hours of training) are exactly identical to the last ones (created after 32 hours), suggesting
that either AdaDelta “broke” after the first few minibatches and started rendering all updates zero or
the pickler only ever saved the initial state of the models, somehow ignoring subsequent updates—
the latter seems most likely, because the weight matrices have all retained the initial diagonal shape,
the biases are all set to zero, and performance appears to be continuing to improve beyond the first
handful of iterations (the GRU with dependency labels especially so). Consequently, I can only
show the improvement in the model cost–which was pickled correctly–at this time and speculate
from that./

5 Future Research

There are a two primary ways this research can be extended (beyond fixing the pickle bug). The first
would be to continue examining models made more complex with syntactic information, and the
second would be to continue examing models made more simple with different kinds of RNNs. The
simplest next step for adding syntactic information would be to make the model predict dependency
labels as well as words (which it does not currently do); in this way, during training the model
would receive feedback regarding the correct syntactic structure of the target sentence, rather than
only learning how to predict the right strings. Another possibility would be to turn the input layer
into a tensor layer; rather than concatenating the word vector and the dependency vector, this version
would take their outer product and dot this times a weight tensor rather than a weight matrix. This
would allow the model to capture different kinds of dependencies between the input word and its
role in the sentence. An even more complex model would encode the sentence using the whole
dependency tree, using some form of the DT-RNN model proposed by Socher et al. (2014), and
the most complex model would attempt to decode the sentence into a dependency tree. This poses
some significant difficulties that would need to be overcome, since dependency trees are in general
not binary, and in some cases non-projective (i.e. there may be non-dependent words separating
dependents from heads).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

In the other direction, it would be worth examining further how the recurrent architecture affects
performance. The first thing to do would be to compare the optimized models shown here to the
originally proposed models, to see whether the smaller and faster versions (especially of the LSTM)
are inherently inferior to the original versions for this task. It should also be shown that this ef-
fect scales with the size of the hidden layer—that is, it may be that the simpler architecture only
makes a difference for small hidden sizes, and when more information can be stored at each layer
the more complex structure may become more efficient. Next, it would be worth examining how the
models compare to diagonally-initialized basic RNNs with the same number of parameters, explor-
ing whether basic, well-initialized RNNs outperform these more complex models. Does the ability
to modulate input and easily forget previous hidden states significantly improve performance? If
smaller models can work as well as larger models, it may open the gates to better optimization
algorithms, potentially resulting in better final solutions.

6 Conclusion

This paper has found some evidence suggesting that providing an encoder-decoder RNN model with
richer syntactic information may improve performance without even needing to increase the size of
the model. It also found some evidence suggesting that the simpler GRU architecture may be more
efficient for capturing linguistic dependencies than the LSTM architecture, potentially allowing for
better performance either from more representational power or faster optimization algorithms. While
there are a few caveats (the dependency augmentation didn’t improve the LSTMs and it is possible
that the gain in efficiency from smaller architectures won’t scale to larger hidden sizes), the results
of this study point to these lines of research as directions to explore in our attempt to make deep
learning the highest-performing approach for MT.

References
Agić, Ž., Aranzabe, M. J., Atutxa, A., Bosco, C., Choi, J., de Marneffe, M.-C., Dozat, T., Farkas,

R., Foster, J., Ginter, F., Goenaga, I., Gojenola, K., Goldberg, Y., Hajič, J., Johannsen, A. T.,
Kanerva, J., Kuokkala, J., Laippala, V., Lenci, A., Lindén, K., Ljubešić, N., Lynn, T., Manning,
C., Martı́nez, H. A., McDonald, R., Missilä, A., Montemagni, S., Nivre, J., Nurmi, H., Osenova,
P., Petrov, S., Piitulainen, J., Plank, B., Prokopidis, P., Pyysalo, S., Seeker, W., Seraji, M., Silveira,
N., Simi, M., Simov, K., Smith, A., Tsarfaty, R., Vincze, V., and Zeman, D. (2015). Universal
dependencies 1.1. Github repository.

Ballesteros, M. and Nivre, J. (2012). Maltoptimizer: an optimization tool for maltparser. In Proceed-
ings of the Demonstrations at the 13th Conference of the European Chapter of the Association for
Computational Linguistics, pages 58–62. Association for Computational Linguistics.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-
Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In
Proceedings of the Python for Scientific Computing Conference (SciPy). Oral Presentation.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python. ” O’Reilly
Media, Inc.”.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio,
Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

Durrani, N., Haddow, B., Heafield, K., and Koehn, P. (2013). Edinburghs machine translation sys-
tems for European language pairs. In Proceedings of the Eighth Workshop on Statistical Machine
Translation, pages 114–121.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In MT summit,
volume 5, pages 79–86.

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent networks of
rectified linear units. CoRR, abs/1504.00941.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.

Nesterov, Y. (1983). A method of solving a convex programming problem with convergence rate
O(1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., and Marsi, E. (2007).
Maltparser: A language-independent system for data-driven dependency parsing. Natural Lan-
guage Engineering, 13(02):95–135.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word represen-
tation. Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014),
12.

Socher, R., Karpathy, A., Le, Q. V., Manning, C. D., and Ng, A. Y. (2014). Grounded compositional
semantics for finding and describing images with sentences. Transactions of the Association for
Computational Linguistics, 2:207–218.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems, pages 3104–3112.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

6


	Introduction
	The Models
	Data
	Results
	Future Research
	Conclusion

