
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Selecting Best Answers from Question-Answers Pairs

Anonymous Author(s)
Affiliation
Address
email

1 Introduction

Question answering is considered as a huge research area in artificial intelligence. In this work,
I am particularly interested not in creating answers to factoid questions, but rather selecting the
best answer given a list of answers to a non-factoid question. I will approach this problem in two
steps. Firstly I will train the model to learn a good answer pattern independent of the context of
the question. The assumption I will use is that for question-answers pairs that contain less than 10
answers, most of the answers are question-related. Then I will add context of the question into the
model and compare the evaluation result of two different models.

2 Problem Statement

The dataset I used is a subset of the Yahoo! Answers corpus from a 10/25/2007 dump. It is a
small subset of the questions, selected for their linguistic properties (for example they all start with
”how to—do—did—does—can—would—could—should”. Additionally, questions and answers of
obvious low quality are removed, i.e., only questions and answers that have at least four words, out
of which at least one is a noun and at least one is a verb are remained. The final subset contains
142,627 questions and their answers.

In addition of question and answer text, the corpus contains a small amount of meta data, i.e., which
answer was selected as the best answer, and the category and sub-category that was assigned to this
question. Any noise that is not human language, such as ”< br >” and url are filtered out during the
parsing phase.

The evalution is based on the accuracy of predicting the best answer out of an answer list. The
second model is expected to outperform the first model. While the exact advantage of the second
model is unclear, both models are expected to outperform the baseline, which I will explain in
section 4 (Preliminary Experiment).

3 Technical Approach and Models

The method I intended to use is the bag of words model. However I did not expect the bag of words
model to have relatively high performance, because it does not capture the length of the question,
which I will explain in section 4. Therefore I used the recurrent neural network to replace the bag of
words model to see if there could be performance increase.

4 Preliminary Experiment

One important question to answer about the data set is whether this dataset is suitable for a project
on answer selection. To answer this question I ploted out the cumulative distribution function of the
number of answers. From figure 1, more than 80% of the question-answers pairs contain less than

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: number of answers - percentile

10 answers and over 50% of the question-answers pairs contain less than 5 answers. Roughly 10%
of the question-answers pairs contain just one answer, and I will not use those pairs for evaluation.

One interesting feature of a good answer in the real world is the length of the answer. Therefore,
instead of using random guess as the baseline, I will use the ”picking the longest answer” as the base-
line. The baseline is displayed in Figure 2. The baseline accuracy of the model is 55% when all the

Figure 2: number of answers - accuracy

question-answers pairs are included. The baseline is relatively good considering that it outperforms
random guess by maintaining 0.2 accuracy even when the number of answers is 20.

5 Details

5.1 Parsing

I use nltk library to tokenize all the answers and set up the corpus. All the texts within< and / > are
filtered out before all the sentences are tokenized. The frequency of each token is then computed,
and all the tokens that have frequencies lower than the threshold are set to UNCLEAR. This step is
important as it removes lots of tokens with no particular semantic meaning and significantly reduces
the size of the corpus. Parsing stage generates a relatively clean corpus with N = 38921 tokens.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

One category of removed tokens is mathematical formula, because most of the formula appears only
once in the dataset. As I am not particularly clear how to handle mathematical formula, I treat those
tokens as UNCLEAR, but it is possible to set those tokens to FORMULA in the future research.

5.2 Model Formula

5.3 Model 1

The first model I use is a naive bag of word model. For each answer, the relative frequency of tokens
are computed and stored in a vector with of sizeN . Then I use a two-layer neutral network to predict
whether the answer is the best answer.

The output vector ŷ is a row vector of length 2. The value at entry 0 represents the probability that
such answer is not the best answer.

The error is defined as cross entropy function CE.

CE(y, ŷ) = −
∑
i

yilogŷi

The forward propagation is as follows:

h = sigmoid(xW1 + b1)

ŷ = softmax(hW2 + b2)

Where x the input vector.

However, because the corpus size is still relatively large, using naive bag of word model takes too
long to generate a relatively good result. Each iteration of training with forward propagation plus
backward propagation takes more than an hour. Therefore, I switch to model 2 by using sparse
matrix computation.

5.4 Model 2

The main model I use is recurrent neutral network. The word vector is of size N ∗ d, where d is the
size of the vector representation for each word.

Figure 3: Illustration of the recurrent neutral network

For each answer in the answer set, the model builds up M − 1 layers, where M is the total numbr
of tokens. For each layer at step t, it takes in the input feature It−1 and generates the output feature
ht. The output feature is of size d+ 1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

The formula for this model is as follows:
It−1 = [tanh(ht−1), x

′
t]

ht =WIt−1
x′t = [xt, t]

ŷ = σ(WRht)

Belows are the details associated with this model:

1. xt is the input word vector at step t.
-Size d.

2. The adjusted word vector x′t consists of the word vector for word at step t plus the step t.
-Size d+ 1.

3. It−1 is the result of a non-linear layer concatenated with the adjusted word vector.
-Size 2d+ 2.

4. ht is the result of a linear layer. h0 is the word vector at step 0, i.e. h0 = x0.
-Size d+ 1.

5. ŷ is the prediction vector. The definition is the same as in model 1: the first entry represents
the probability that such answer is not the best answer.
-Size 2.

6. W : weighted matrix used to condition the input of the current layer. It consists of two
submatrices, W1 and W2. W = [W1,W2]
-Size 2(d+ 1)2.

7. W1: weighted matrix used to condition the output of the last layer.
-Size (d+ 1)2.

8. W2: weighted matrix used to condition the input of the current layer.
-Size (d+ 1)2.

9. σ: the non-linearity function to compute the output probability distribution. In this case
σ = softmax.

The cross entropy error is defined the same as in model 1.

CE(y, ŷ) = −
∑
i

yilogŷi

Notice that we do not have prediction vectors associated with those intermediate layers, so the cross
entropy error is dependent completely on the prediction vector of the last layer.

The entry of each vector is initialized randomly within range of (0, 0.01).

6 Result and Analysis

Model 2 runs significantly faster than model1, with each iteration of SGD finishing in 1 min because
all the updates are sparse update. However, because the dataset is still considerably large, I am
unable to completely train the model over the question-answer set. The partial result is still 7%
above the base line, and the accuracy is still increasing.

Nonetheless, I would expect Model2 to perform better than the baseline, as the adjusted input vector
for each step contains the information of the total number of steps, i.e. the length of the answer.
Therefore the model2 is able to potentially use information from all the layers instead of just the
input from n closest layers.

One interesting observation from the partial result is that the model generates a lot of false positives.
This is partially due to the fact that most of the answers are really similar. For example for the
following question-answer pair:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Question : How can I keep my curly hair atleast 6 hours?
– I have straight hair and I like to curl my hair ,(for a change)..I do not want to perm my
hair...I use curling iron...but my curls doesn’t last very long not more than an hour...is there
anyway I can keep my curls longer?

Bestanswer : When you simply curl your hair and don’t put anything in it, the curls, unfortuantly, fall
out quickly. You should try using hairspray, the Finesse brand isn’t expensive and works
well. UNCLEAR;Also, some hair types are just very resistant to staying curled. Mine is
like that. Thicker, coarser hair seems to be the easiest to get to stay curled.UNCLEAR;It
is definitly a good idea to not get a perm, half the time they turn out bad and you are stuck
with them. You should just try experimenting with different types of gels and hairsprays
and other things like that until you find something that works.UNCLEAR;Good luck!

Answers :
(a) I have the same problem as you. Try towel drying hair, then apply a styling creme.

Then try curling your hair. Finish off with hair spray over the curls to set the look.

(b) Try using Hot rollers set with a firm hairspray, Leave them in untill they have gone
completely cold. take them out, and shake you curls around gently untill they are
placed where you want them, and spary with hair spray. This will give you better
hold. Try to aviod touching you hair as much as possible, as this will cause your curls
to fall flat faster.

(c) When you simply curl your hair and don’t put anything in it, the curls, unfortuantly,
fall out quickly. You should try using hairspray, the Finesse brand isn’t expensive
and works well. UNCLEAR;Also, some hair types are just very resistant to staying
curled. Mine is like that. Thicker, coarser hair seems to be the easiest to get to stay
curled.UNCLEAR;It is definitly a good idea to not get a perm, half the time they turn
out bad and you are stuck with them. You should just try experimenting with different
types of gels and hairsprays and other things like that until you find something that
works.UNCLEAR;Good luck!!

(d) Get a piece of kitchen roll and folled it half.Then get a piece of hair and rap it round
the kitchen roll,put a knot in the kitchen roll.(do it to all the hair that you want to
curl.Sleep with tit in and take them out when you wake up. it does work.

The partial result predicts that b and c are both best answer, but in the dataset only answer c is the
best answer. This could be explained that this model does not take other answers into account, so
rather than picking the answers out of potential answers, it is trying to predict which answer is good,
and thereby generates lots of false positives.

7 Conclusion

When the dataset is large, the naive bag of word model is far from ideal because the size of the matrix
is too big. Using RNN with sparse matrix multiplication will significantly reduces the number of
matrix operations, and is at least 60 times faster when the corpus is large enough.

Whether RNN will pass the baseline is still unclear, because the CE I picked does not really capture
the another aspect of this problem, as it is trying to use which answer is the best answer as the
heuristics to learn which answer is the good one, and further uses which answer is the good one to
predict which one is the best. One potential way to fix it is to use the new predictor i such that:

ŷi[0] = max(ŷi[0])

among all the answers.

For future ideas, the precision of parsing could be improved. For example the line feed &#xa
is incorrectly parsed as ”&”, ”#”, ”xa”. On the higher level, correctly summarizing the ignored

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

tokens such as mathematical expressions as FORMULA could potentially increase the performance.
Integrating RNN model with sentiment analysis (adding sentiment into each word vector) might also
be an interesting idea.

Acknowledgments

I would like to thank Yahoo! answer for providing dataset for the question-answer pair analysis.

References

[1] Tomas M., Kai C., Greg C., Jeffrey D. Efficient Estimation of Word Representations in Vector Space
[2] R. Collobert and J. Weston. A Unified Architecture for Natural Language Processing: Deep Neural
Networks with Multitask Learning. In International Conference on Machine Learning
ICML, 2008 [3] T. Mikolov, M. Karafiat, L. Burget, J. Cernock y, S. Khudanpur. Recurrent neural network
based language model, In: Proceedings of Interspeech, 2010.
[4] A. Mnih, Y.W. Teh. A fast and simple algorithm for training neural probabilistic language models. ICML,
2012.
[5]F. Morin, Y. Bengio: Hierarchical Probabilistic Neural Network Language Model. AISTATS2005.
[6]Mikael Boden. A Guide to Recurrent Neural Networks and Backpropagation. In the Dallas project, 2002.

6


	Introduction
	Problem Statement
	Technical Approach and Models
	Preliminary Experiment
	Details
	Parsing
	Model Formula
	Model 1
	Model 2

	Result and Analysis
	Conclusion

