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Abstract

The automatic resolution of surface forms into clusters which co-refer to the same
abstract entity is a difficult task with a long history in computational linguistics.
Existing systems for this task tend to rely on complex linguistically-motivated
rules or statistical information about pairs of mentions to make coreference de-
cisions; these systems can be brittle, and tend to have difficulty with high-level
abstract semantics, an area where deep models may be expected to be of use. In
this work, we present a deep architecture for coreference resolution using LSTMs
which requires virtually no hand-engineering of features and potentially better
models human processes of reference resolution. We evaluate our system on the
standard CoNLL 2012 shared task dataset and compare to existing models. While
our results are not state of the art, we surpass some existing published hand-
engineered systems and show that this line of research is a promising direction
for this difficult task.

1 Introduction

In natural languages, speakers use a wide variety of surface forms for linguistic reference, including
diverse forms of a noun, titles, abbreviations, pronominalization, and more. Coreference resolution
is the task of automatically resolving all overt referential mentions into clusters, each of which
consists of mentions co-referring to the same abstract entity.

Figure 1: Visualization of the task. Source: Stanford NLP Group

In the example in Figure 1, “Nader” and “he” are members of one cluster, and “I,” “my,” and “she”
are members of another. Due to the diversity of surface forms for linguistic reference and special
phenomena such as pronominal coreference, this task is very difficult, and performance of state-of-
the-art systems remains far from human levels: below 65% on the standard CoNLL metric, which is
an average of three coreference metrics.

Existing systems for this task tend to use either simple surface features in pairwise classification
architectures [1, 2, 3] which can lack the necessary expressivity for the complexities of linguistic
reference, or they rely on deterministic hand-written rules [4, 5, 6] which are relatively brittle and
do not transfer well to new domains.

In this work we propose that coreference is best viewed as a memory-based sequential learning task
with a document-level loss function. Such an architecture has the advantage, first of all, that it is
analogous to human on-line processing of coreference, where listeners maintain a state of common
ground about the entities under discussion, and probabilistically infer the intended reference given
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the previously seen sequence [7, 8]. Furthermore, learning a deep model for this task would re-
moves the necessity for hand-engineering of complex features traditionally required in coreference
resolution.

2 Related Work

Early work in coreference resolution often derived from linguistic research on anaphoricity in natural
languages, implementing linguistic theories with complex sets of rules [9]. Perhaps the most famous
such early example is Hobbs’ algorithm for proniminal resolution, based primarily on deterministic
walks through syntactic trees [10]. Other unsupervised systems interpreted nominal coreference
resolution as a clustering task, where decisions are made sequentially based on constraints regarding
attributes such as head words, gender, animacy, number, definiteness, and so on [11].

The arrival of statistical machine learning changed the field, with learning-based methods beginning
to dominate in the late 1990s; the features used were often analogous to those generated by deter-
ministic rules, but placed into a learned classification context, often with an architecture focused on
pairwise comparisons between mentions [12, 13]. These approaches often also included additional
modules for sub-tasks such as anaphoricity detection – the determination of whether a given mention
is likely to be coreferent with anything or not [14].

These purely statistical, supervised methods were somewhat upturned in the early 2010s by the ad-
vent of sieve-based architectures, which use multiple passes over each document, applying “sieves”
of differing deterministic rules in a fine-to-coarse fashion; that is, merging mentions into clusters
first based on highly likely rules, and using these clusters to constrain decisions at later stages when
the rules are lower-precision, such as in the case of pronouns [5, 15, 6].

Most recently, the purely statistical approach has again gained favor, as a relatively simple log-
linear model using feature templates recaptured state-of-the-art performance on the task [3]. In
that work, the authors point out that in the proper architecture, traditional pairwise-style feature
templates successfully capture a good deal of the syntactic and discourse variation necessary to
model coreference; however, semantics present a stumbling block. For example, because exact
string match and head-word string match features are so prominent, their system has a great deal of
difficulty handling mentions that use previously unseen head words.

This issue suggests that deep models for coreference are a good place to look. Word vector embed-
dings derived from co-occurrence in corpora have shown high applicability to semantic tasks such
as grounding in images, semantic role labeling, and sentiment analysis [16, 17, 18, 19], so perhaps
they will provide the semantic representational capacity to address the difficulty of semantics in
coreference.

3 Data

For this task we use the English data from the CoNLL 2012 shared task on multilingual coreference
resolution, the standard dataset for this task [20].

One substantial limitation in this setting is the dataset is relatively small: the training set contains
only 2802 documents with approximately 1.3 million words total.

Hand-annotation of linguistic data for coreference requires substantial training and time, and is
therefore relatively expensive to obtain, so this limitation is somewhat unavoidable. Existing sys-
tems often use external data sources like WordNet, gender and animacy lexicons, and named entity
annotations [3], but these are potentially not robust to new data. In this work we use no external data
sources except pre-trained word vector representations.

The CoNLL shared task data is in a relatively complex task-specific format. The first step of this
project, therefore, was to implement a coreference data reading and evaluation framework in Python,
that provides an easy interface for training, allowing the use of simple nested for loops to access the
documents in the corpus and the sentences, parses, and tokens for each. In a future iteration of this
work we intend to release this code publicly to encourage deep learning researchers to investigate
the coreference task; most existing state-of-the-art systems are written in Java [15, 21, 3], while
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Figure 2: Diagram of the architecture of our system for the generation of the coreference matrix C
for one document with T words (x1, ..., xt).

Python is much more common for deep systems with packages such as Theano, and the necessity to
handle the CoNLL data format may indeed prove a substantial barrier to entry.

4 Architecture

In this project, we propose a new architecture for coreference resolution which combines a word-
level sequential memory network with a global loss function that considers pairwise mention-
mention links in an entire document.

We base this architecture on two primary intuitions. First, as previously mentioned, since real-world
coreference resolution is a sequential task for humans in which we build up mental representations
of the entities under discussion and probabilistically link new mentions to existing clusters in this
representation, the sequential component of the system has the potential to model coreference analo-
gously to real-world processing. For example, we expect pronouns to act as operators that encourage
the model to look into its memory for semantically compatible mentions available for coreference.
Secondly, a document-level loss function considering pairwise links may help to encourage global
consistency.

To implement such a model we use a long short-term memory (LSTM) setup for sequential mod-
elling [22], where our input is word vectors pretrained with some other method, though these are
updated with backpropogation during training in a manner to be described.

To these word vectors we concatenate a few simple additional features to provide some higher-
level context to the model. We add binary features that fire if the word is capitalized and if it’s the
last token in a given sentence, to inform the model about sentence boundaries. We also add index
features for the part-of-speech tag of the word and the ID of its speaker in spoken documents.

Given T words in a document, we run the LSTM over all the words in the document to generate a set
of hidden state vector representations, which we multiply by another weight matrix W to generate
our word-level outputs (y1, ..., yt in Figure 2). These we concatenate into into a matrix A in RT×D,
where D is the dimensionality of the hidden state.

We then define another matrix S of dimensionality RM×T , where M is the number of mentions
in the document. S is a matrix that serves to index which words belong to coreferent mentions in
the document. We want mentions to be represented by the average of their constituent word-level
representations, so a given row in S will contain all zeroes except for n adjacent entries with the
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value of 1
n each. The generation of this matrix is analogous to the “mention detection” step in many

existing systems [15, 3].

We take S · A to produce a matrix M in RM×D, where rows correspond to coreferent mentions in
the document. In our current formulation, each mention is represented in M by the average of its
constituent word-level output vectors; each row is a mention, maintaining dimensionality D of the
size of the hidden state output from the LSTM. We normalize the rows in M to length one.

Then we use M to generate what we term a “coreference matrix,” somewhat analogous to a correla-
tion matrix, by takingMMT and passing the matrix through a rectified linear unit (RELU) pointwise
nonlinearity. This produces our coreference matrix C in RM×M , where we consider the value for a
given entry in the matrixMi,j – effectively, the cosine similarity between mentions representations i
and j to be the “coreference score” between mentions i and j. The process described above through
generation of C is shown in Figure 2.

At training time, we compare C to a gold coreference matrix G, which is composed of zeroes and
ones: Mi,j is zero when mentions i and j do not occur in the same cluster, is one when they do. We
use a loss function with pointwise cross-entropy, expressed as follows:

L = − 1

N2

∑
i,j

Ti,j ∗ logCi,j + (1− Ti,j) ∗ log(1− Ci,j)

At decoding time, we set a threshold γ on the entries in C: entries above the threshold are marked
as one (or, coreferent) and entries below are marked as zero. We use C to then generate a corefer-
ence graph where all one-valued mention pairs are grouped into the same cluster. Single singleton
mentions are not annotated in the gold coreference data, any mentions with only entries below the
threshold are marked as singletons and not included in the graph. We anticipate that this threshold
will directly allow us to choose a tradeoff point on the precision-recall curve; the threshold is tuned
empirically on the development data to set the optimum tradeoff.

5 Experiments

In our experiments we compare to results from the CoNLL 2012 shared task; in particular, the
closed-track results on English with gold mentions provided. We implement the architecture de-
scribed above in Theano [23].

We use only the provided training data, and therefore our results are comparable to the closed track.
As mentioned above, the generation of the words-to-mentions binary matrix S is analgous to the
mention detection step in many systems submitted to the shared task. For the purposes of this project
we omit this step, and directly use the gold mention spans provided in the training and testing data.

All systems in the shared task also reported results under this condition, so this allows us to make
direct comparisons without introducing unnecessary noise. Mention detection itself may also be
amenable to learning by deep models, but we do not include this component in this project.

Evaluation results are reported using the CoNLL coreference evaluation metric. Since coreference
outputs are complex graphical structures, evaluation of coreference itself is a difficult question. The
CoNLL metric is simply an unweighted average of three separate metrics: MUC, B-CUBED, and
CEAF.

In these experiments, we use 50-dimensional word vectors trained with GloVe [24] on 6 billion
tokens of English, and use a hidden state D of size 128.

5.1 Results

Our results on the CoNLL 2012 test set are given in Table 1. These results are generated with our
threshold γ set to the average best threshold tuned on the development set, which empirically we
found to be 0.79.
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SYSTEM MUC B3 CEAFe SCORE
P R F1 P R F1 P R F1

Li (2012) [25] - - 60.45 - - 57.18 - - 36.58 50.65
Zhekova et al. (2012) [26] 68.54 78.10 73.01 63.14 58.63 60.80 52.84 37.44 43.83 59.21
Fernandes et al. (2012) [2] 71.18 91.24 79.97 65.81 85.51 74.38 74.93 43.09 54.72 69.69
Chen and Ng (2012) [27] 72.3 89.4 79.9 64.6 85.9 73.8 76.3 46.4 57.7 70.5
Durrett and Klein (2013) [3] - - 84.49 - - 75.65 - - 69.89 76.68
This work 64.6 71.08 67.68 59.22 49.12 53.7 41.2 39.46 40.31 53.89

Table 1: Our results compared to performance of existing systems on the CoNLL 2012 shared task
data. Results for all systems are given using gold mentions for comparability with our results. - is
used when a particular paper did not report a particular result.

6 Conclusion

In the end, our performance was reasonable; our system is comparable to the systems on the lower
end of the spectrum for the shared task [25, 26], and definitely a substantial ways away from the
state of the art. Nevertheless, our system achieved this reasonable performance with virtually no
hand-engineering of features that all the systems we are comparing to contain. We use no attribute
labels, no named entity recognition, and almost no external information except pre-trained word
vectors.

Furthermore, our system’s performance arises in spite of the fact that it does not explicitly encode
any information about exact string matches and head word matches, which are by far the strongest
features for nominal coreference in traditional systems. One could imagine extending our current
system by adding additional explicit features of the type seen in more traditional systems into the
mention matrix M to encode some of this linguistic knowledge.

As shown in Figure 3, our system is successfully able to learn coreference links between
semantically-related mentions that are abstractly connected but have few overt cues to their ref-
erence. For example, in the document given, we link “only about 1,500 in the world” with “a rather
special one,” a correct coreference link that almost any existing coreference system would be very
unlikely to make.

Still, the problem of insufficient training data for coreference systems is a persistent one. While there
is fundamentally no way to get around the extreme expense in money and time to produce annotated
coreference data, our system provides an entry point for introducing useful external supervision in
the form of additional embeddings.

For example, one early possibility that we considered was to use linked textual references in
Wikipedia as instances of coreference, and to train a GloVe-like model with a modified loss func-
tion encouraging the embedded representations to be more nearby in a “referential” vector space as
opposed to the traditional co-occurence space. Since there will likely never be sufficient annotated
coreference data to effectively optimize our word-level representations from scratch, in our model
such a representation might act as a much better initialization of our parameters and allow the model
to find a better local optimum.

We could also reconsider the composition of the mention detection matrix S; at the moment it
effectively takes the average of the constituent vectors in A, but one could imagine an instantiation
that, for example, explicitly considers the head word and computes a weighted average where the
head word is the most important element.

There is a sense in which it seems likely that a more developed system along these lines would use
parse tree structures rather than raw words, such as with a TreeLSTM [28]. We considered this
possibility, but it remains unclear how to appropriately propagate information from one sentence to
the next. Passing the hidden state of the top node of the tree would require the LSTM to remember
low-level details such as the presence of a pronoun in a very abstract representation.

This project serves as an effective first proof-of-concept: it is possible that the beneficial seman-
tic properties that emerge from co-occurence-based word embeddings can be leverged effectively
with deep learning systems to address the complex task of linguistic coreference. However, we’re
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not there yet, and it may be the case that the most effective long-term solution will involve com-
bining deep models such as the one presented here with traditional, linguistically-informed hand-
engineered features and rules. We intend to continue work on this project and produce full, publish-
able results as soon as possible.
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Figure 3: PCA projection of the mention vectors for a document in the development set.
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