Neural Coreference Resolution

Kevin Clark
Department of Computer Science
Stanford University
Stanford, CA 94305
kevclark@cs.stanford.edu

Abstract

Much work on coreference resolution has gone towards hand crafting compli-
cated features that are predictive of coreference. However, systems relying on
these can become unwieldy and may generalize poorly to new data. In this work,
I present a new coreference system based on neural networks that automatically
learns dense vector representations for mention pairs. These representations are
built almost entirely from distributed representations of the words in the mentions
and surrounding context, and can capture semantic similarity important for coref-
erence. | use these representations to train an incremental coreference system that
can exploit entity-level information. Despite using a minimal number of hand-
engineered features, the neural coreference system is competitive with the current
state of the art on the OntoNotes dataset.

1 Introduction

Coreference resolution is the task of identifying mentions in a text that refer to the same real-world
entity. For example, the mentions “Obama”, “the president”, and “he” could all refer to Barack
Obama. Coreference resolution is considered an important aspect of text understanding, and has
numerous applications from information extraction to question answering to machine translation.

Most coreference resolution systems rely on complex highly engineered features capturing relevant
syntactic, semantic, and discourse-level information [3}/35,|30] and some are even entirely rule based
[29]. However, recent work by Durrett and Klein [[11] demonstrates that lexical features generated
from simple templates can be very effective for coreference. In contrast to using a large set of sparse
lexical features, this work investigates using dense features from distributed work representations
instead. These can provide more efficient learning and better generalization because similar words
have similar vector representations.

The distributed word representations are used to train deep neural networks for coreference. Deep
learning models have been successful for a variety of natural language processing tasks [8} [33}
19], and can capture much more complicated interactions than the linear models commonly used
for coreference resolution. To the best of my knowledge, this is the first time deep learning has
successfully been applied to the task of coreference resolution.

I first describe a neural mention pair model that predicts whether two mentions are coreferent or
not and then discuss extending this model by untying the weight matrices depending on the types
of the involved mentions, which allows the model to better distinguish between the linguistically
different phenomena of nominal coreference resolution and pronominal anaphora resolution. Using
the mention pair model as a building block, I then propose a way of training an entity-centric coref-
erence system that learns an effective policy for building up coreference chains incrementally. This
system has the ability to let previous coreference decisions to inform later ones through entity-level
information shared with a max pooling operation.

I evaluate the models experimentally on the OntoNotes coreference dataset. Despite using very small
number of hand engineered features, the neural coreference systems are competitive with recent
state-of-the-art results. Furthermore, the incremental coreference system significantly outperforms
the mention pair model with simple best-first clustering, showing it is able to effectively combine the
information from many mention pairs when making decisions. Error analysis shows that the deep
learning models are able to capture semantic similarity between mentions, an aspect of coreference
that previously has been considered and “uphill battle” in coreference resolution [[11].

2 Mention Pair Model

Mention pair models perform binary classification, predicting whether two mentions belong in the
same coreference cluster or not. Mention pair models have historically been very effective for coref-
erence (34, 26, 13} 35} 4] and when combined with a secondary clustering model can achieve state-
of-the-art results [7]]. My neural mention pair model first builds up a vector representing the pair of
mentions in question. This vector is then passed through a feed-forward neural network to produce
a prediction.

2.1 Features

Pairs of mentions are represented with features from each of the mentions and their contexts as well
as features capturing relations between the pair.

Mention Features:

e Word vectors for the first, last, and head words of the mention.

e The average of all word vectors in the mention.

e The 10 features used by Rescanes et al. (2013) [31]] for singleton mention identification,
which capture aspects of a mention like the gender, animacy, quantification, and negation.

e The dependency relation between the head word of the mention and its parent (binary
feature on the 10 most common dependency relations).

Context Features:

e The average of the word vectors of all words to the left (or right) of the mention in a window
of 1, 5, or infinity (e.g., the entire sentence to the left of the mention).

Mention-Relating Features:

e The distance between the mentions in number of sentences and number of intervening
mentions. Distances are binned (e.g., one bin might denote a sentence distance between 5
and 10) and then encoded as a 1-hot vector.

e Two binary speaker identification features classifying the mentions as either being almost
certainly coreferent or incompatible for coreference (e.g., “you” and “me” from the same
speaker are incompatible).

e Three binary string matching features indicating if the mentions have matching head words,
match partially, or match exactly.

I used 50 dimensional word embeddings from word2vec [24] trained on the Wikipedia and Gi-
gaword corpus for these features. Currently these vectors are treated as static and are not updated
during training. In the spirit of deep learning minimizing the need for hand-engineered features, I
also evaluate the model when only using distance features and features from word vectors.

2.2 Neural Network Architecture

Let m; and c; denote that mention features and context features for mention 7 and r; ;) denote the
mention pair features for two mentions ¢ and j. Given two mentions ¢ and j with ¢ preceding j in the
text, the neural mention pair model first concatenates the features from the two mentions to produce

a single vector representing the pair. This vector is then passed through a standard neural network
with two hidden layers:
Input Vector Construction: 2 = [m;, m;,c;, cj,7(; j)]
Hidden Layer 1: 7(Y) = ReLu(W Mz + b))
Hidden Layer 2: h®) = ReLU(W @M 4 p?)
Prediction Layer: p(i, j) = sigmoid(w? h(?)

The final output p(i, j) is taken to be the probability that mentions ¢ and j are coreferent. The
network is trained by finding parameters ¢ that minimize the negative log likelihood of the data:

LO)=— > log(@ipli,) + (1 —w:5)(1 = p(i,)
1,jEM,I<]
Where M is the set of all mentions in the document and x; ; is a boolean variable that takes value 1
if mentions ¢ and j are coreferent and 0 if otherwise.

Untying the Weight Matrices based on Mention Type The linguistic phenomena in coreference
resolution can vary significantly based on the“types” of the involved mentions. In particular, the
important information necessary for pronominal anaphora resolution and nominal coreference res-
olution are extremely different. For example, string matching and measures for semantic similarity
are powerful features for nominal coreference resolution, but are not applicable for pronominal
anaphora resolution. To capture this, I explored using different weight matrices for the first layer
based on the types of the involved mentions. Let ¢; denote the “type” of mention i: either nominal
or pronominal. With untied weight matrices, the first hidden layer computes:

hV) = ReLU(W, ™ m; + thmz)mj +WOlei, ¢ + Wt(::ljr(i,j) + b))

Thus the model essentially learns two matrices for (for example) the mention features for the first
mention W (™) Although I could have gone further by also untying the context weight matrix, or
by creating more mention types such as separating proper nouns from common nouns, this would
significantly increase the number of parameters in the model, and I found no improvement from
doing this in preliminary experiments. Figure 1 shows the full neural network architecture with
untied weights.

probability of coreference p

final layer with sigmoid nonlinearity

second hidden state h®

additional hidden layer

hidden state h®

ReLU nonlinarity

(m1) (m2) (G] (r)
.

mention 1 features mention 2 features mention 1 context mention 2 context mention relating
\ features features features

V

input vector x

Figure 1: Mention pair model with untied weights.

Training details: The network was regularized using dropout [16] with a rate of 0.5. During train-
ing, the loss was minimized with AdaGrad [10] for 50 epochs with minibatches of size 200. The
model was evaluated on a held out dataset after each epoch and the highest scoring parameters were
selected for the final model. I trained the model with 300 units in the first hidden layer and 100 units
in the second one.

3 Incremental Coreference Model

Mention pair scores alone are not enough to produce a final set of coreference clusters because they
do not enforce transitivity: if the pair of mentions (a, b) and the pair of mentions (b, ¢) are deemed
coreferent by the model, there is no guarantee that the model will also classify (a, ¢) as coreferent.
Thus a second step is needed to coordinate the scores to produce a final coreference partition. There
have been many different proposed ways of doing this [18} 134} 26, (14} 23] 27], but all of these
approaches have the weakness of only relying on local (pairwise) information to make decisions.
This means the systems cannot consolidate information at the entity level. As a result, coreference
chains produced by such algorithms can exhibit low coherency. For example, a cluster may consist
of [Hillary Clinton, Clinton, he] because the prediction between Hillary Clinton and Clinton is made
independently of the one between Clinfon and he.

A more sophisticated approach is to forgo using a mention pair model and instead train a classifier
that operates between two clusters of mentions instead of two mentions. This has the advantage of
allowing earlier coreference decisions to inform later ones; for example finding Clinton and he are
coreferent makes it less likely that Hillary Clinton and Clinton are coreferent.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

(mmyomen] (omon] (o [we]

BN amee—
Hillary Clinton announced ... Clinton launched the campaign ... Bill Clinton said he would ... v merge @
Cluster 1 Cluster 2 Cluster 3
[Hillary Clinton } [Clinton J [Bill Clinton J [he J
[Hillary Clinton] [Ciinton] [Bill Clinton] [he] —_— ——r
@ v merge
7 coreterent 7 coreferent 7 coreferent Cluster 1 Cluster 2
[Hillary Clinton] [Clinton] [Bill Clinton] [he]

X g0 not merge

Figure 2: Left: mention pair model, right: incremental coreference model

3.1 Test Time Inference

At test time, the classifier acts as an agent that builds up coreference chains with agglomerative
clustering. It begins in a start state where each mention is in a separate single-element cluster. At
each step, it observes the current state, which consists of all partially formed coreference clusters
produced so far, and selects some action which merges two existing clusters. The action will result
in a new state with new candidate actions and the process is repeated.

The number possible cluster merges is quadratic in the number of clusters, so considering all of
them would make inference very slow. To deal with this, I took the approach of Clark and Manning
[7] and pruned the search space with scores produced from the mention pair classifier. First, the
agent orders all mention pairs in the document in descending order according to their pairwise
scores. This causes clustering to occur in an easy-first fashion, where harder decisions are delayed
until more information is available. Secondly, the agent discards all mention pairs that score below a
threshold ¢ under the assumption that the clusters containing these pairs are unlikely to be coreferent.
Algorithm 1 shows the full test-time procedure.

3.2 Learning

We face a sequential prediction problem where future observations (visited states) depend on previ-
ous actions. This is challenging because it violates the common i.i.d. assumptions made in statistical
learning. For example, naively training the agent on the gold labels alone would unrealistically teach
the agent to make decisions under the assumption that all previous decisions were correct, poten-
tially causing it to over-rely on information from past actions. This is especially problematic in
coreference, where the error rate is quite high

Imitation learning, where expert demonstrations of good behavior are used to teach the agent, has
proven very useful in practice for this sort of problem [1]]. I use imitation learning to train the agent
to classify whether an action (merge or do not merge the current pair of clusters) matches an expert
policy. In particular, I use the DAgger imitation learning algorithm [32]. Costs are added to actions

Algorithm 1 Inference method: agglomerative clustering

Input: Set of mentions in document M, pairwise classifier with parameters 6,,, agent with pa-
rameters 0, cutoff threshold ¢
Output: Clustering C

Initialize list of mention pairs P — []
for each pair (i, j) € M? with i < j do
if pg, (i,j) > t then
P.append((i, 7))
end if
end for
Sort P in descending order according to pg,

Initialize C' — initial clustering with each mention in M in its own cluster
for (4,j) € P do
if Cli] # Clj]
and pg_ (C[i], C[j]) > 0.5 then
DoMerge(Ci], C[j], C)
end if
end for

based on the B3 coreference resolution metric [2]], which gives the model a concept of the severity
of a mistake. This is important for learning because some cluster merges (e.g., between two very
large clusters) impact the score much more than others. The full learning procedure is the same as
the one used by Clark and Manning [7]], which is described in detail in their paper.

The important information for the purpose of this work is that DAgger assembles a dataset that is
used to train the agent. Each example in this dataset consists of two clusters (¢;,, ¢;,) and a cost s;
which provides a measure of how beneficial it is to merge the two clusters. A negative cost means
the merge is good (i.e., will lead to a high scoring coreference partition) and a positive cost means
the merge is bad. The goal is now to train a binary classifier that assigns high probability to pairs of
clusters with low costs and low probability to pairs of clusters with high costs.

3.3 Neural Network Architecture

A neural network is trained to do this task. The classifier builds a representation of a pair of clusters
using the pairs of mentions that exist between the two clusters (i.e., each mention is in a different
cluster). For each pair of mentions, it computes a feature vector using the same architecture as
the mention pair model except it stops after producing A(?) and returns it. The model then applies
a max-over-time feature pooling operation [8] to these vectors across all mention pairs. The full
architecture is shown in Figure 3.

Building Mention Pair Representations: for each mention pair (m;, mj) € ¢ X co compute
a vector representation v(,,, ;) the same way as

computing k3 in the neural mention pair model
Building a Cluster Pair Representation: v, c,) = max{v(m, m,) : (Mi,m;) € c1 X ca}

Prediction Layer: p(ci,c2) = sigmoid(wTU(cl’Q))
The network is trained by finding parameters ¢ that minimize the risk over the dataset:

E(G) = Z SiPe (Cil ’ Ci2)

where s; is the cost of merging clusters ¢;, and c;,.

Merge between clusters ¢; = {m,, m,} and cluster ¢; = {m;, m;}

probability of merge being good: p(cy,c;)

final layer with sigmoid nonlinearity

T max pooling

T T mention pair model T T

X(mqm;) X (mqmj) X (mpm;) X (mp,mj)

all mention pairs between clusters ¢, Xc,

Figure 3: Mention pair model with untied weights.

4 Related Work

There has been extensive work on mention pair models for coreference 4], but none of
these use distributed word representations or neural network models. Most rely on complex hand-
crafted engineered features, and analysis of coreference resolution features has been done in great

depth [31[35 201 31].

In contrast, Durrett and Klein [11]] propose a coreference model using a much simpler set of sparse
lexical features from simple templates. Although this does greatly reduce the hand-engineering
going into the coreference system, sparse lexical features lack the shared representation that makes
distributed word embeddings so powerful. Their system also operates entirely on mention pairs, so
it cannot capture entity level information the way an incremental coreference model can.

Incremental coreference systems that can use entity-level information have also been explored by
previous work. One approach is using mention-entity models that go through mentions left to right,
assigning each mention to a (partially completed) cluster [21,[37, 30]. Our system, however, builds
clusters incrementally through merge operations, and so can operate in an easy-first fashion, delaying
later decisions until more information is available. Raghunathan et al. [29] take this approach with
arule-based system that runs in multiple passes and Stoyanov and Eisner [36] train a classifier to do
this with a structured perceptron algorithm. These systems all consolidate entity-level information
using hand built rules. In contrast, the neural incremental model learns how mention-pair features
should be combined at the entity level.

Imitation learning has been employed to train coreference resolvers on trajectories of decisions
similar to those that would be seen at test-time by Daumé et al. [9] and Ma et al. [22]. This work
differs from these in that it makes use of a cost function instead of only learning which actions look
good locally according to a heuristic.

This work is most similar to Clark and Manning’s [[7] system, which learns an incremental policy for
building up coreference chains in the same way as this system’s. However, that work creates features
between clusters of mentions from the pairwise probabilities produced by mention pair models (for
example, one feature is the maximum probability of coreference over the mention pairs between the
two clusters). In contrast to only using a single score to produce cluster-level features, this work
combines all the features from vector representations of mention pairs.

I am not aware of any end-to-end coreference system using deep learning. Guha et al. [15] use
distributed word representations in their mention pair coreference model, but only use them to pro-
duce a cosine similarity score as a feature in a logistic regression classifier. The most similar deep
learning work to his one is perhaps Chen and Manning’s research on neural dependency parsing [6]],
in which the model also learns which local actions lead to a desirable state. However, because the

error rate for systems in dependency parsing is much lower than for coreference, they do not use an
imitation learning algorithm for training.

S Experiments

5.1 Experimental Setup

Dataset: I run experiments on data from the English portion of the CoNLL 2012 Shared Task [28]],
which is derived from the OntoNotes corpus [[17]. The dataset consists of about 4500 news articles
annotated with gold standard coreference clusters. The data comes already split into training, dev,
and test sets.

Mention Detection: All experiments were run using system-produced predicted mentions. I used
the rule-based mention detection algorithm from Raghunathan et al. [29], which first extracts pro-
nouns and maximal NP projections as candidate mentions and then filters this set with rules that
remove spurious mentions such as numeric entities and pleonastic it pronouns. Using a simple
high-recall but low-precision approach like this is common for mention detection. The system can
later learn to ignore incorrect mentions produced in this step by not assigning them to a coreference
cluster.

5.2 Mention Pair Classification

Training set construction: Large documents have a huge number of mention pairs, but only a small
fraction of these will be coreferent. To reduce the class imbalance and large size of the dataset, |
down-sampled negative to produce more manageable sets for training. Most experiments are run
using a training set of 2.5 million mention pairs, but I also evaluate the final model on a larger set of
7.5 million pairs.

Evaluation: 1 evaluate the mention pair binary classifiers using Fj score and area under the
precision-recall curve (auc). Examples from different documents are grouped together in this evalua-
tion (as opposed to computing the average F} for a document). Doing this is common for coreference
evaluation because it stops small documents from having an overly large influence.

Results: Experimental results for mention pair classification on the development set are in Table
1. T first explore the benefits of untying the weight matrices in the first layer of the mention pair
model. Doing this resulted in an improvement of 0.6 F; and 0.004 auc, showing there are gains
from separating the learning for pronominal anaphora and nominal coreference resolution.

One advantage of the deep learning approach to coreference is the lack of hand-engineered features
going into the system. I evaluated the importance of the few hand-engineered features included in
the model with an ablation study, training models without any hand-crafted features or with only
the 5 string matching and speaker identification features. The hand-engineered features proved to
be quite important, causing an almost 5 point improvement in accuracy. Most of this gain, however,
comes from the speaker identification and string matching features.

I also compare with the state of the art mention pair model from Clark and Manning’s [[7] corefer-
ence system. This model is a logistic regression classifier with over one hundred syntactic, semantic,
lexical, and distance-based features in addition to a complicated feature conjunction scheme. De-
spite using a much simpler feature set, the best neural network model outperforms this classifier
when trained on datasets of the same size.

Error Analysis Although overall performing about the same as Clark and Manning’s system, the
neural mention pair model performs about 3 F points better on proper-nominal coreference (56.3
Fy vs 53.5). Some example mention pairs that the neural mention model gets right that Clark and
Manning’s system does not includes (Cuba, the island), (the USS Cole, the ship), (Christ, the Son
of God), (Bush, the president). Even without the context of the surrounding text, these mentions are
clearly likely to be coreferent because they are semantically similar. However, capturing this kind of
similarity in automatic coreference models has long been elusive [11]. Word embeddings have been
known to capture this sort of semantic information [25]], and these wins suggest that neural network
approaches to coreference can make headway in incorporating shallow semantics into coreference
resolution systems.

Model, Training Set Size Fy auc
Pairwise model from Clark and Manning (2015), 32M (entire training set) 64.0 | 0.696
Pairwise model from Clark and Manning (2015), 2.5M 62.0 | 0.675
Neural mention Pair Model, 2.5M 63.0 | 0.679
without untied weights 62.4 | 0.674
with only speaker identification and string matching hand-engineered features | 61.5 | 0.667
with no hand-engineered features 58.4 | 0.609
Neural mention Pair Model, 7.5M 64.0 | 0.689

Table 1: Mention Pair classification accuracies on the development Set

MuUC B3 CEAF,, CoNLL

Prec. Rec. Fy Prec. Rec. Fy Prec. Rec. Fy Avg. I}
Fernandes et al. 7591 65.83 70.51 | 65.19 51.55 57.58 | 57.28 50.82 53.86 60.65
Bjorkelund and Kuhn | 743 67.46 70.72 | 62.71 5496 5858 | 594 52.27 55.61 61.63
Ma et al. 81.03 66.16 72.84 | 6690 51.10 57.94 | 68.75 4434 5391 61.56
Durrett and Klein 72.61 6991 71.24 | 61.18 56.43 58.71 | 56.17 54.23 55.18 61.71
Clark and Manning | 76.12 69.38 72.59 | 65.64 56.01 60.44 | 59.44 5298 56.02 63.02
Mention Pair Model | 73.84 66.93 70.22 | 61.12 54.14 57.41 | 5444 51.31 52.83 60.15
Incremental Model 77.08 67.79 72.13 | 66.03 5437 59.63 | 5848 52.28 55.21 62.32

Table 2: Comparison of this work with other state-of-the-art approaches on the test set.

5.3 End to End Coreference

Evaluation: The models are evaluated using three of the most popular metrics for coreference
resolution: MUC, B2, and Entity-based CEAFE (CEAF,). We also include the average F score
(CoNLL F}) of these three metrics, as is commonly done in CoNLL Shared Tasks

Results: In Table 3 we compare the results of our system with the following state-of-the-art ap-
proaches: Clark and Manning [7], the Berkeley system [12]; the Prune-and-Score system [22]]; the
HOTCoref system [3]]; and Fernandes et al.[13]]. Despite using a small number of hand-crafted fea-
tures, the model is competitive to the current state-of-the art, outperforming all recent works except
for Clark and Manning’s. The model does particular well with the B3 metric, which is unsurprising
because these are used to produce costs during training.

In addition to evaluating the incremental coreference system, we also evaluate the mention pair
model with best-first clustering [26], which assigns mentions the highest scoring previous mention
as the antecedent. This coreference system performs significantly worse (over 2 points in CoNLL
Fy), showing that the neural network coreference model benefits greatly from incorporating entity-
level information when making decisions.

6 Conclusion

I introduced a new approach to coreference resolution that uses distributed word representations in
neural network models to make predictions. These models use significantly fewer hand-crafted fea-
tures then current state-of-the-art systems, but remain competitive with them in performance. The
neural mention pair model performs on par with the complicated mention pair model from Clark
and Manning [7]], and outperforms it on proper-nominal resolution, where it can make better model
semantic similarity important for coreference. We also show untying the weight matrices of the
mention pair model to distinguish pronominal anaphora and coreference resolution resulted in gains
in accuracy. Using the mention pair model as a component piece, I describe a incremental coref-
erence system that operates between clusters of mentions instead of pairs, which allows previous
coreference decisions to inform later ones. This approach significantly outperforms the mention
pair model with simple best-first clustering, suggesting it is able effectively to exploit entity level
information.

References

[1] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469-483, 2009.

[2] Amit Bagga and Breck Baldwin. Algorithms for scoring coreference chains. In The First
International Conference on Language Resources and Evaluation Workshop on Linguistics
Coreference, pages 563-566, 1998.

[3] Eric Bengtson and Dan Roth. Understanding the value of features for coreference resolution.
In Empirical Methods in Natural Language Processing (EMNLP), pages 294-303, 2008.

[4] Anders Bjorkelund and Richéard Farkas. Data-driven multilingual coreference resolution using
resolver stacking. In Proceedings of the Joint Conference on Empirical Methods in Natural
Language Processing and Conference on Computational Natural Language Learning - Shared
Task, pages 49-55, 2012.

[5] Anders Bjorkelund and Jonas Kuhn. Learning structured perceptrons for coreference resolution
with latent antecedents and non-local features. In Association of Computational Linguistics
(ACL), 2014.

[6] Dangi Chen and Christopher D Manning. A fast and accurate dependency parser using neural
networks. In Empirical Methods in Natural Language Processing (EMNLP, pages 740-750,
2014.

[7] Kevin Clark and Chris Manning. Entity-centric coreference resolution with model stacking. In
Association of Computational Linguistics (ACL), 2015.

[8] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. The Journal of Machine Learning
Research, 12:2493-2537, 2011.

[9] Hal Daumé III and Daniel Marcu. A large-scale exploration of effective global features for a
joint entity detection and tracking model. In Empirical Methods in Natural Language Process-
ing (EMNLP), pages 97-104, 2005.

[10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.

[11] Greg Durrett and Dan Klein. Easy victories and uphill battles in coreference resolution. In
Empirical Methods in Natural Language Processing (EMNLP), pages 1971-1982, 2013.

[12] Greg Durrett and Dan Klein. A joint model for entity analysis: Coreference, typing, and
linking. Transactions of the Association for Computational Linguistics (TACL), 2:477-490,
2014.

[13] Eraldo Rezende Fernandes, Cicero Nogueira Dos Santos, and Ruy Luiz Milidid. Latent struc-
ture perceptron with feature induction for unrestricted coreference resolution. In Proceedings
of the Joint Conference on Empirical Methods in Natural Language Processing and Confer-
ence on Computational Natural Language Learning - Shared Task, pages 41-48, 2012.

[14] Jenny Rose Finkel and Christopher D Manning. Enforcing transitivity in coreference resolu-
tion. In Association for Computational Linguistics (ACL), Short Paper, pages 45-48, 2008.

[15] Anupam Guha, Mohit Iyyer, Danny Bouman, Jordan Boyd-Graber, and Jordan Boyd. Remov-
ing the training wheels: A coreference dataset that entertains humans and challenges comput-
ers. In HLT-NAACL, 2015.

[16] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

[17] Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph Weischedel.
Ontonotes: the 90% solution. In Human Language Technology and North American Asso-
ciation for Computational Linguistics (HLT-NAACL), pages 57-60, 2006.

[18] Andrew Kehler. Probabilistic coreference in information extraction. In Empirical Methods in
Natural Language Processing (EMNLP), pages 163—-173, 1997.

[19] Yoon Kim. Convolutional neural networks for sentence classification. Empirical Methods in
Natural Language Processing (EMNLP.

[20] Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Surdeanu, and Dan
Jurafsky. Stanford’s multi-pass sieve coreference resolution system at the conll-2011 shared
task. In Proceedings of the Conference on Computational Natural Language Learning: Shared

Task, pages 28-34, 2011.

[21] Xiaogiang Luo, Abe Ittycheriah, Hongyan Jing, Nanda Kambhatla, and Salim Roukos. A
mention-synchronous coreference resolution algorithm based on the bell tree. In Association
for Computational Linguistics (ACL), page 135, 2004.

[22] Chao Ma, Janardhan Rao Doppa, J Walker Orr, Prashanth Mannem, Xiaoli Fern, Tom Diet-
terich, and Prasad Tadepalli. Prune-and-score: Learning for greedy coreference resolution. In
Empirical Methods in Natural Language Processing (EMNLP), 2014.

[23] Andrew McCallum and Ben Wellner. Conditional models of identity uncertainty with appli-
cation to noun coreference. In Advances in Neural Information Processing Systems (NIPS),
pages 905-912, 2005.

[24] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in Neural Information
Processing Systems (NIPS), pages 3111-3119, 2013.

[25] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Human Language Technology and North American Association for
Computational Linguistics (HLT-NAACL), pages 746751, 2013.

[26] Vincent Ng and Claire Cardie. Improving machine learning approaches to coreference resolu-
tion. In Association of Computational Linguistics (ACL), pages 104-111, 2002.

[27] Cristina Nicolae and Gabriel Nicolae. Bestcut: A graph algorithm for coreference resolution.
In Empirical Methods in Natural Language Processing (EMNLP), pages 275-283, 2006.

[28] Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and Yuchen Zhang.
Conll-2012 shared task: Modeling multilingual unrestricted coreference in ontonotes. In Pro-
ceedings of the Joint Conference on Empirical Methods in Natural Language Processing and
Conference on Computational Natural Language Learning - Shared Task, pages 1-40, 2012.

[29] Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nathanael Chambers, Mihai
Surdeanu, Dan Jurafsky, and Christopher Manning. A multi-pass sieve for coreference res-
olution. In Empirical Methods in Natural Language Processing (EMNLP), pages 492-501,
2010.

[30] Altaf Rahman and Vincent Ng. Narrowing the modeling gap: a cluster-ranking approach to
coreference resolution. Journal of Artificial Intelligence Research (JAIR), pages 469-521,
2011.

[31] Marta Recasens, Marie-Catherine de Marneffe, and Christopher Potts. The life and death of
discourse entities: Identifying singleton mentions. In Human Language Technology and North
American Association for Computational Linguistics (HLT-NAACL), pages 627-633, 2013.

[32] Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Artificial Intelligence and Statistics
(AISTATS), pages 627-633, 2011.

[33] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, An-
drew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over
a sentiment treebank. In Empirical Methods in Natural Language Processing (EMNLP.

[34] Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong Lim. A machine learning approach
to coreference resolution of noun phrases. Computational Linguistics, 27(4):521-544, 2001.

[35] Veselin Stoyanov, Claire Cardie, Nathan Gilbert, Ellen Riloff, David Buttler, and David
Hysom. Reconcile: A coreference resolution research platform. 2010. Computer Science
Technical Report, Cornell University, Ithaca, NY.

[36] Veselin Stoyanov and Jason Eisner. Easy-first coreference resolution. In COLING, pages
2519-2534, 2012.

[37] Xiaofeng Yang, Jian Su, Jun Lang, Chew Lim Tan, Ting Liu, and Sheng Li. An entity-mention
model for coreference resolution with inductive logic programming. In Association of Compu-
tational Linguistics (ACL), pages 843-851, 2008.

10

	Introduction
	Mention Pair Model
	Features
	Neural Network Architecture

	Incremental Coreference Model
	Test Time Inference
	Learning
	Neural Network Architecture

	Related Work
	Experiments
	Experimental Setup
	Mention Pair Classification
	End to End Coreference

	Conclusion

