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Abstract

This project focuses on the multi-label classification of product (BeerAdvocate
dataset) and service (Yelp restaurants) reviews. We found Recurrent Neural Net-
works (RNN) with Long Short Term Memory (LSTM) and Convolutional Neural
Networks (CNN) to be the most suitable Neural Network architecture for unstruc-
tured natural language content like reviews. We achieved validation accuracies of
56-58% with LSTM and CNN, against best-performing baselines 55% (from Sup-
port Vector Machines) and 47% (from the Random Forest approach). This is in
line with similar best in class performance by neural networks in the RNN [5],[6]
and CNN [13],[14] families. The typical skew towards higher scores in reviews
has been removed, and equal numbers of reviews corresponding to each label were
considered. While our architecture works far superiorly on binary classification
tasks (82% accuracy), we have focused on 5-label classification since that is more
representative of the actual application we target (predicting quantified summary
of reviews).

1 Introduction

A marketing manager needs to have a constant pulse of the market’s perception of his product
or service. Consumer product companies receive human language reviews and comments about
their product from surveys, customer complaints, store feedback and more. We have created neural
network models to help a marketing manager condense this overwhelming natural language content,
into simple numerical scores.

We formulated this as a multi-class labeling problem. We used the BeerAdvocate [19],[20] dataset,
and the Yelp Academic Dataset [21] for training our model. These are 10,000 - 20,000 human
language reviews, each of which contain 100-500 words of text and a corresponding score (ranging
from 1 to 5) given by the reviewer. Some sample reviews are shown in Table 1 and 2. We used the
Python based ‘Theano’ library [22],[24] to build our neural networks.

2 Background Research

The most common approach for Sentiment Analysis is the Bag of Words approach [1]. Other meth-
ods include modeling the sentiment compositionality through feature engineering like contextual
valence shifters[2] and propagation of polarity for two sentence components [3]. Another approach
is the successive application of Word Sense Disambiguation, Sense Level Polarity Assessment, train-
ing of Hidden Markov Models and then Sentence Level Polarity Detection [4].

More recent neural networks for this task have been Recurrent Neural Networks built on the LSTM
architecture [5], [6]. The most basic Simple Recurrent Neural Network [7] was used a starting
point to address sequence-dependent tasks like machine translation [8] and language modeling[9].
However, the practical difficulty with using RNNs for natural language tasks is that the gradients



Table 1: Yelp dataset - Review samples with their respective scores

Label Sample Review Extract

5 .. will travel the extra miles because the service and food at this location is the best...
4 .. everyday, well prepared and taste bud pleasing home style cooking ...

3 .. better than average, but I don’t like seeing all the sauce resting at the bottom ...

2 .. We will not be back . The iced tea is also terrible tasting ...

1 .. worst pizza I’ve ever had What a mistake. I will never order from them again! ...

Table 2: Beeradvocate dataset - Review samples with their respective scores

Label Sample Review Extract

5 .. OUTSTANDING! Quite possibly one of the finest Rauch beers I have had ...

4 .. I think it works well. Note it’s not cloying, the sweetness is enjoyable ...

3 .. I wish the flavor bore out the strength of the aroma, but still not a bad beer ...

2 .. it’s not something I would seek out again, but it doesn’t fail ...

1 .. yellow, fizzy, meant for washing dirt out of your mouth after mowing the lawn ...

from the objective function vanish after a few steps [10]. The LSTM architecture is observed to
overcome this problem [11] for natural language tasks including sentiment analysis. Studies targeted
at a similar objective as ours, have successfully used LSTMs [5],[6] to obtain accuracies of 48-50%
(on 5-label classification tasks). Similar to Socher et. al. [13], we have used cross-entropy error as
the overall objective function to minimize.

Convolutional Neural Networks (CNNs) are another widely used architecture for sentiment analysis
on unstructured text, since this induces a feature graph over the input sentence. Experiments towards
a similar objective as ours, have led to accuracies of 48-50% on similar sentiment classification tasks
[13], [14] in the movie reviews dataset.

In recent times, recursive neural networks [12] have delivered distinctly better performance on sen-
timent analysis tasks, thanks to the tree structure being processed. For example, multi-class labeling
accuracy, when measured at each tree level, is 81%. The overall sentence accuracy (measured at the
root node level) is 46%. We have not taken this approach since we wanted the neural network to
process unstructured text in the natural form.

3 Experiments

3.1 Baselines
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Figure 1: Baseline Results
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To verify the usefulness of the data and target a baseline to beat, we created two classifiers based on
the Random Forest and Support Vector Machine (SVM) techniques. We used 12,500 reviews from
each of the two datasets to create this baseline. The results are shown in Figure 1.

We created three types of Neural Networks (with increasing levels of complexity) - the Simple
Neural Network, a Recurrent Neural Network with the LSTM architecture and a Convolutional
Neural Network.
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3.3 Long short term memory Figure 2: SRN - Dependence on embedding size

Since we were working with unstructured text and had to incorporate contextual information from
the ‘recent past’ of the sentence, we decided to create a Recurrent Neural Network (RNN) using the
Long Short Term Memory (LSTM) architecture.

i; = tanh (W(i)xt + U(i)ht,l) :: Input Gate
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: Output
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¢t = ftoci—1 + 14 o ¢ :: Final memory
h¢ = o4 o tanh (¢;) :: Final hidden state
¢ = softmax (Uh; + b) :: Prediction
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Figure 3: Beer Advocate Dataset - best performing LSTM results

We again represent every unique word by a unique integer ID (about 10,000-12,000 unique words).
We got the best performance using an embedding layer of dimension 25 on the Yelp dataset, and
dimension 50 on the Beeradvocate dataset. The results are shown in Figure 3 and 4.



Accuracy for Yelp dataset: 0.556
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Figure 4: Yelp Dataset - best performing LSTM results

3.3.1 Effect of Embedding Dimension

Embedding dimension represents how complex a word’s representation would be. Every word is
represented by a ‘d’ dimensional vector, if the embedding dimension is ‘d’. This is another parameter
we used to ensure that the model is trained in a general manner. Since our tasks contain 10,000-
12,000 distinct words, we tried embedding dimensions between 10 to 100. The results are shown in
Figure 5.
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Figure 5: Effect of Embedding dimension on Validation accuracy

3.3.2 Effect of Dropout

We found that the ‘Dropout’ mechanism [15] did not work well with the LSTM. “The reason might
be that dropout corrupted its memory, thus making training more difficult” [5]. The results are shown
in Figure 6.

3.3.3 Effect of Regularization

Regularization helps the neural network learn a generalized model, and not a model very specific to
the training data. The regularization parameter controls how much of this effect needs to be imposed.
The results are shown in Figure 7.

3.3.4 Effect of output node

We created two configurations of output from the LSTM architecture - one with output averaged
from all the nodes, and another with output from only the final node. We observed that the LSTM
with output averaged from all the nodes performs marginally better (minor improvement of 0.1%).
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Figure 6: Effect of Dropout on Validation accuracy
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Figure 7: Effect of Regularization on Validation accuracy

3.3.5 Effect of multiple layers

We added another hidden layer to the existing LSTM architecture described above, and found that it
does not lead to an improvement in validation accuracy.

3.3.6 Effect of bidirectional architecture

The LSTM architecture described above was modified such that each review is read both forwards
and backwards, and the output vectors of both these are pooled towards the final output. Once again,
we found that this does not lead to an improvement in validation accuracy.

3.3.7 Effect of regression architecture

To completely eliminate the mis-classification of a small number of ‘very negative’ (label 0) reviews
as ‘very positive’ (label 4), we implemented a linear regressor in place of the softmax layer. This
attempts to capture the inter-relation between the labels (0 < 1 < 2 < 3 < 4), rather than consider
them as discrete unrelated named labels. The negative entropy objective function was also changed
to max-margin. However, there was no improvement in validation accuracy.

3.4 Convolutional Neural Networks

From our background research, we found the CNN to be useful for similar tasks with unstructured
data. Since CNNs are commonly applied for computer vision applications, we modified our task to
look like a computer vision task involving word vectors, instead of image representations.
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Figure 8: CNN - best results on the respective test datasets

We created a pre-processing layer that replaces every word in a sentence with the corresponding
word vector, created by the word2vec [17] algorithm. This is then passed through a single CNN
layer, with a filter size of 5, and batch pooling of every 2 words [CNN-poolingLayer]. This is
then fed to a hidden layer and the following activation layer is a softmax function. We found that
this architecture yields the best results. In addition, we also tried using double CNN layers, that is
[CNN-poolingLayer-CNN-poolingLayer], which gave slightly better (about 1.5%) results.

We observe that the LSTM predicts some very negative review (label 0) as very positive (label 4)
on the Beeradvocate dataset, and this problem is addressed partially by the CNN. This is due to the
presence of locally acting negations (like ‘not smoked’ etc) that are not captured by either of these
architectures.

3.5 Other Interesting Observations

In all our experiments above, we have removed the inherent skew towards higher ratings in review
datasets. However, if the dataset is used a it is (with the skew towards high ratings), we observe
validation accuracies of 65-68% compared to the highest SVM baselines of 60-64%.

Also, training a word2vec [17] model on the Yelp reviews dataset yields many interesting insights by
itself. Sorting words by their cosine distance to the keywords gives a intuitive sense of what aspects
of a restaurant influence a customer. For example, the 20 words closest to ‘Pizza’ include ‘crust’,
‘pepperoni’, ‘knots’, ‘calzone’ and ‘wings’ - suggesting that these are aspects on which a customer’s
mind forms an impression of a pizza. Similarly, the 20 words closest to ‘Burger’ include ‘patty’,
“fries’, ‘bun’, ‘juicy’ which are very clearly the most expected features of a burger. At a higher level,
the 20 words closest to ‘Ambience’ include ‘decor’, ‘service’, ‘interior’, ‘setting’, ‘relaxing’, ‘cozy’
and ‘upscale’, suggesting to a manager that these are some aspects his restaurant should focus on
conveying.

4 Future Work

As anext step, the program could identify which keywords contribute the most towards a high review
score. These keywords would give the restaurant owner a good idea of what facilities / features /
food options create a perception of ‘high review score’ in the customer’s mind. This can be used to
improve the restaurant’s service.

To take it the next level, we could implement a Named Entity Recognition module to identify specific
brands in the reviews, and rank them based on the potential review scores.

A couple of other modifications to the existing system could be attempted. A new architecture could
be created such that the CNN output feeds into the LSTM, thereby extracting the benefits of both a
built-up tree structure and the memory nature of LSTM. Also, a model trained on one dataset, could



be tested on a slightly different dataset. For example, a model trained on restaurant reviews could
be tested on a bars review dataset.

5 Conclusion

In this project, we create an LSTM architecture to capture history and long distance interplays
through gated memory nodes. Our architecture’s performance (56 - 58%) is in line with state of the
art [5],[6],[12],[13],[14] for a similar task of fine-grained multi-label classification. For a dataset of
10,000 - 12,000 reviews (and 10,000 - 12,000 unique words), we find that an embedding dimension
of 25-50, with a regularization parameter of 0.0001 delivers best validation accuracies. Dropout
seems to give only a minor improvement of 0.3% with the Beeradvocate dataset (with probability
of dropout 0.25), and does not improve accuracy with the Yelp dataset. On CNNs, we observe that
additional an additional CNN layer improves validation accuracy by 1.5%.
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