
Document Embeddings via Recurrent Language
Models

Andrew Giel
BS Computer Science

agiel@cs.stanford.edu

Ryan Diaz
BS Computer Science

ryandiaz@cs.stanford.edu

Abstract

Document embeddings serve to supply richer semantic content for downstream
tasks which require fixed length inputs. We propose a novel unsupervised frame-
work by which to train document vectors by using a modified Recurrent Neural
Network Language Model, which we call DRNNLM, incorporating a document
vector into the calculation of the hidden state and prediction at each time step.
Our goal is to show that this framework can effectively train document vectors to
encapsulate semantic content and be used for downstream document classification
tasks.

1 Introduction

Word embeddings, also known as word vectors, have proven to be one of the most powerful building
blocks for advancements in natural language processing in recent years. These distributed represen-
tations have shown the capacity to encapsulate the semantic and syntactic structure of language
while remaining a fixed-length real-valued vector, allowing for easy usage and extension into a va-
riety of tasks. Despite these advances for single words and short phrases, it is still unclear how to
represent collections of many words such as sentences, paragraphs, and documents in as powerful
and accessible a format. Traditional techniques for vector representations of documents such as bag-
of-words models have obvious weaknesses such as the lack of word order preservation and the lack
of semantic encapsulation. This paper builds upon the work of others in creating semantically and
syntactically expressive general purpose fixed-length document representations. These document
embeddings are trained using a modified Recurrent Language Model known as DRNNLM.

2 Related Work

Our work is inspired by prior research into document embeddings and Recurrent Neural Network
Language Models (RNNLMs).

Quoc Le and Tomas Mikolov presented a paper titled Distributed Representations of Sentences and
Documents. [3] which is the primary motivation and inspiration for our research. In this paper
the authors present an unsupervised model as an extension of the Word2Vec model [5], capable
of training what the authors refer to as Paragraph Vectors. These Paragraph Vectors are trained
in two manners, very similar to the way that word vectors are trained. One method, known as
Paragraph-Vector Distributed-Memory or PV-DM, averages or concatenates the Paragraph Vector
into the context window for all windows of the document. PV-DM incorporates word order while
training. The other method, which ignores word order, is very similar to the Continuous Bag-of-
Words method for training word vectors. Known as Distributed Bag of Words version of Paragraph
Vector, or PV-DBOW, this technique creates Paragraph Vectors by training to predict words within
a window of the paragraph. The resulting PVs created by these methods proved to be very effective
in downstream tasks, with results outperforming many (supervised) state-of-the-art methods on the

1

Stanford Sentiment Treebank and IMDB data sets. Even more remarkable is that both of these tech-
niques are completely unsupervised (or create supervised tasks from unstructured data), meaning
the amount of data that accessible to the model is nearly infinite. This paper is our primary inspi-
ration for researching document embeddings, as it showed that the task was both possible but also
extremely useful.

Figure 1: The PV-DM model

While Le and Mikolov’s paper served as inspiration for this paper, Mikolov and Zweig’s paper
Context Dependent Recurrent Neural Network Language Model. [4] served as the guiding force for
our model formulation. In this paper the authors demonstrated state-of-the-art results for the task of
creating Recurrent Neural Network Language Models (RNNLMs) by supplementing the standard
RNNLM architecture with a ‘feature layer’, which served as a context vector, incorporating this
vector into both the hidden layer and output layer calculation. The authors found that a vector
created by running Latent Dirichlet Allocation on the previous 50 words served as the best context
vector, giving them state-of-the-art results in terms of perplexity over multiple datasets. This model
was known as RNNLM-LDA. The RNNLM-LDA model architecture was highly influential when
designing our own network, as will be elaborated upon later.

Figure 2: The RNNLM-LDA model

2

3 Model

We propose a novel model used to train document vectors int the form of a modified Recurrent
Language Model, which we call DRNNLM, that incorporates the document vector in both the hidden
layer and prediction at each time step.

3.1 DRNNLM

In this section we give a formal mathematical description of our model, which we call DRNNLM.

We begin with a word to vector mapping, where each word has a unique column within our matrix
L. L can be randomly instantiated or with a set of pre-trained vectors such as GloVe or Word2Vec.
Additionally, we have with a matrix D, representing the document matrix, with each document
mapped to a unique column within D. This matrix will be randomly instantiated.

Just as for traditional n-gram language model, our DRNNLM is given a series of words xm−n...xm
with the goal of predicting xm+1. Additionally, our DRNNLM takes a document di where the series
xm−n...xm ∈ di. The values of our hidden layers ht and output yt are defined as follows

ht = σ(Wxt +Hht−1 + di + bh)

yt = g(Uht +Gdi + b)

where σ(z) is the sigmoid function and g(p) is the softmax function. This incorporation of the
document vector into the hidden layer and prediction is very similar to the respective functions used
by Mikolov for context dependent RNNLMs [4].

Figure 3: The DRNNLM model

3.2 Training

Training is accomplished via backpropagation of errors. In particular, we minimize the cross-entropy
loss for our language model. More formally, our loss function J(xi, yi, di) is defined as follows

J(xi, yi, di) = CE(xi, yi, di) = −
∑
t∈xi

y log(ŷt)

Since the focus of this paper is to train our document vectors, D, we explicitly derive the gradient
for Ddi

, the update for a single document.

∂J

∂Ddi

=
∑
t

GT (ŷt − yt) +
C∑
i=0

(σ′(zt−i) · UT (ŷt−i − yt−i))

where σ′(z) = σ(z)(1− σ(z)) and C is the number of timesteps backwards we propagate through
time.

3

It is possible within this framework to train only document vectors once the other parameters of
the network have been trained. In this scenario, ‘training’ takes place in two stages. In the first,
we minimize the cross-entropy loss for our language model over our corpus by backpropagating
the errors into all of our parameters: L,D,W,H,U,G, bh, b. Secondly, given a new corpus of
documents, we expand D and for each new document train the corresponding column vector, once
again by minimizing cross-entropy loss but only propagating errors to D. This second stage allows
us to create vectors for arbitrary numbers of new documents quickly that can be used in downstream
tasks.

3.3 Intuition

The intuitions for this network formulation and its capacity to the create of rich, meaningful docu-
ment vectors are clear. Firstly, by training the vectors with a language model, we believe word order
will be encapsulated. Secondly, by incorporating the document vector at each time step of the lan-
guage model we believe the resulting document vector will be amply contextual and representative.
In particular, our formulation mirrors that of Mikolov for context dependent RNNLMs [4]. Whereas
Mikolov found improvements over standard RNNLMs by incorporating a context vector created via
Latent Dirichlet Allocation, we use our document vectors as the context vector and backpropagate
into them. The intuition here is that we can learn the context vector and use that context vector as
the document vector.

4 Experiments

4.1 Data

For our experimentation we used the 20 Newsgroups dataset [2]. This dataset consists of 20000
short documents grouped into 20 distinct categories. We compared the effectiveness of several doc-
ument representations by looking at the F1 score of each representation given the task of document
classification.

We instantiated our Lwith GloVe [1] vectors, using a vocabulary size of 100,000. We found 100,000
to be large enough to contain almost all of the words found in the dataset while not too large. Any
words found in the dataset that were not within the vocabulary were replaced with an ‘UUUNKKK’
token whose vector was randomly instantiated.

4.2 Implementation

Our model was written in the Python library Theano. Theano allows for optimized matrix operations,
automatic differentiation, and the usage of Graphics Processor Units (GPUs). This allowed our
model to be clearly defined and very fast. We ran all experiments on an Amazon AWS EC2 GPU
instance (g2.2xlarge) in order to take full advantage of Theano’s capabilities.

4.3 Challenges

One of the biggest challenges we faced was training time. Even using Theano and GPU instances,
we found that our training time was far too large for the scope of this project. To make a full epoch
through the training set was going to take approximately 24 hours, making training very expensive.
This is most likely due to two challenges: training RNNs is very computationally expensive since
the recurrence cannot be vectorized but must occur sequentially, and two of our network’s dense
matrices U,G are very large (U,G ∈ R|V |×hdim . These two challenges forced us to choose our
experiments wisely and limited our ability to tune hyperparameters.

4.4 Baselines

Our first attempt at creating a document representation was to average the word vectors of every
word in the document. Using 300-dimensional GloVe vectors trained on the Wikipedia 2014 and
Gigaword 5 datasets we averaged each word embedding to leave us with a 300-dimensional docu-
ment vector.

4

These document vectors were used as input to a linear SVM (squared hinge loss, C = 1.0, tolerance
= 1e-4) to classify each document into one of twenty classes. The results of using the average-
word document vector with a linear SVM were compared with the use of simple bag-of-words and
tfidf document representations. The results show that the average-word document representation
produces similar results to the bag-of-words model, both of which underperform the tfidf model.

4.5 DRNNLM

We trained the DRNNLM on our dataset for 25 epochs (limited by computation time). We ran
the model over sentences from each document training each document vector by backpropogating
the error of each incorrect word predicition into the corresponding row of D. D, the matrix con-
taining the document representations of each document was used to run experiments measuring the
representational capacity of our model using implicit and explicit evaluation metrics.

4.6 Results

4.6.1 Implicit

As shown in the figure below the representation of each document in 300 dimensional space
the documents show little separation based on document class. K-nearest neighbor classification
provides essentially random classification results. The document vectors produced from running
our model do not show clear separability based on the class of the document.

Figure 4: Sampling of 200 document vectors plotted via PCA

4.6.2 Explicit

Averaging the word vector representations of each word in each document for a document represen-
tation provides comparable results to other document representation techniques that use the word
counts in a document to represent it in a fixed length vector. Our language model construction pro-
vides random classification and thus is not listed.

5

Table 1: Classification using a Linear SVM
Model Precision Recall F1-Score

Average GloVe 0.69 0.70 0.69
Bag-Of-Words 0.69 0.69 0.69

tf-idf 0.81 0.80 0.80

5 Future Work

Future work on this model would include better training methods. Making this model more efficient
to train and training for more epochs over that datset would make the model more representative of
the content of each document. Starting training with a pre-trained language model on the dataset
could help in training. The complexity of the model aims to create a deep representation of each
document, but overall the entire model likely needs to be redesigned to find a better way to extract
semantic meaning. Core aspects to the task of document embedding creation need to be improved.

6 Conclusions

The final results of this model were not impressive in terms of both implicit and explicit evaluation
metrics. The complexity of the model versus the Mikolov document vector model led to the model’s
lack of practicality. Training both a language model and document vector simultaneously took a
long time for a reasonably sized data set. Training the model for more epochs was not practical
given our computational resources, but given much longer training time it is possible this model
could show improved results. The complexity of our model and training through backpropagation
meant that the document vector was only adjusted slightly for each training example, most of the
classification error was used to train the language model. In the end traditional document represen-
tation techniques vastly out performed our model, but finding new ways to optimize and adjust our
document representation system could potentially prove useful in future research projects.

References
[1] C. D. M. Jeffrey Pennington, Richard Socher. Glove: Global vectors for word representation. 2014.
[2] K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth International Conference

on Machine Learning, pages 331–339, 1995.
[3] T. M. Quoc Le. Distributed representations of sentences and documents. 2014.
[4] G. Z. Tomas Mikolov. Context dependent recurrent neural network language model. 2012.
[5] K. C. G. C. J. D. Tomas Mikolov, Ilya Sutskever. Distributed representations of words and phrases and

their compositionality. 2013.

6

	Introduction
	Related Work
	Model
	DRNNLM
	Training
	Intuition

	Experiments
	Data
	Implementation
	Challenges
	Baselines
	DRNNLM
	Results
	Implicit
	Explicit

	Future Work
	Conclusions

