

Learning Sentence Vector Representations to Summarize Yelp Reviews

Neal Khosla
Stanford University
nealk@cs.stanford.edu

Vignesh Venkataraman
Stanford University
viggy@stanford.edu

June 9, 2015

Abstract

Summarization is a key task in natural language processing that has many practical use cases in the real world. One such use case is with regard to product or restaurant reviews, which often contain repetitions of the same or similar opinions ad nauseum. It would be ideal to parse the set of reviews for a particular entity and generate a summarization that encompasses all the key points contained in the full set. This paper details a three-pronged approach to tackling this issue as it pertains to the Yelp Dataset of reviews, using naive statistical NLP, the Word2Vec model, and a newer paragraph vector model to try to learn vector representations of sentences; these learned representations are then used to cluster and extract relevant sentences from the superset using k -means clustering. The paragraph vector model, in particular, achieves good performance on a ROUGE-based evaluation metric that measures the overlap between the key sentences for a place of business as hand-labeled by a human and the key sentences returned by the algorithm.

1 Introduction

The challenge we have taken up is that of summarizing Yelp reviews for different businesses. Namely, we seek to take the set of reviews for a given business and be able to output some sort of summary or set of relevant opinions that a user might want to discern about the business if they were to read through all the reviews themselves. This problem is interesting given that many users do exactly this using Yelp on a daily basis. Since many Yelp users visit the site in order to form opinions on a business, they often read many reviews for a given business to form a more educated and accurate opinion. Our goal was to approximate this process and demonstrate the possibility of a system to derive a sort of “consensus” about each business that would enable users to (if this were in production) skip out on reading through all the reviews for a given business, thus saving users time and effort whilst making the Yelp product more compelling.

Given the relative open-endedness of this problem as well as its difficulty, we set out to find a way to capture the information contained in the reviews in a manner that would at least extract some of the relevant information without necessarily giving us a perfect summary of all the reviews. In technical terms, we hope to give users high “precision” with less promises about the “recall” - that is, the returned results should accurately capture at least some of the most common sentiments expressed in the overall set of reviews for a business without guaranteeing that all relevant viewpoints are captured.

At a high level, our approach was to find a way to best represent the different review types of a business in vector space. Much like word vectors and sentence vectors, we operated under the hypothesis that we could learn representations of the information contained in reviews and then extract the most relevant sets of such information. To do this, we essentially threw the kitchen sink

054 at the problem, generating vector representations for review sentences in a variety of different ways,
055 and then used various forms of clustering to extract key phrases (or sentences) from these vector
056 representations.

058 2 Background and Related Work

061 While there hasn't been a lot of work we found in applying Deep Learning directly to summarization
062 problems, there has been a lot of work on understanding meaning and representing natural language
063 in vector form. The first model we examined was the word2vec model developed by Mikolov et al.
064 [4]. In particular, we looked at the skipgram model that tries to predict the surrounding words given
065 a current word. Another model we examined was the GloVe model proposed by Socher et al. [5].
066 This model is similar in many ways to the skipgram model. Both Word2Vec and Glove have been
067 shown to learn word vector representations quite well, and they accurately capture the relationships
068 between words (the canonical example used for this is Word2Vec('king') - Word2Vec('man') +
069 Word2Vec('woman') = Word2Vec('queen'), a remarkable result). However, GloVe ends up being
070 much more of a memory hog, with common implementations in Python requiring memory quadratic
071 in the size of the vocabulary. As a result of this, and the fact that GloVe word vectors have been
072 shown to be just about as good as Word2Vec word vectors, we decided to use Word2Vec as one
073 of our models. In order to extend the individual word vectors generated by Word2Vec to the
074 more complex sentence vectors, we chose to simply add the word vectors for each word in a given
075 sentence; we also considered concatenation and pointwise multiplication.

076 While research into word vector representations has yielded excellent results, there isn't nearly as
077 much literature on learning representations for things like sentences or paragraphs; obviously, re-
078 search into this is ongoing. Our research revealed a small number of papers that have sought to learn
079 vector encodings for entities larger than individual words. Formeost among these is the 'Paragraph
080 Vector' model developed by Tomas Mikolov and Quoc V. Le [2]. This (very recent) model learns
081 fixed-length vector encodings for variable length inputs (like sentences in a review, for example)
082 through deep learning, specifically by averaging or concatenating both learned word vectors and
083 a special context-specific 'Paragraph Vector' (here applied to a sentence) to predict the next word
084 given a context. Learning these sentence and word vectors is accomplished via standard neural
085 network feed-forward and backpropagation steps.

086 The only other paper we could find that directly tried to represent sentence-level structures was the
087 Dynamic Convolutional Neural Network algorithm proposed by Nal Kalchbrenner et al. [1], which
088 uses a combination of convolutions and dynamic k -max pooling to try to represent sentences and
089 learn sentence structure. The issue with this model is that the learned representations are essen-
090 tially word vectors again, and representing a sentence requires either combining word vectors or
091 tacking word vectors together in the matrix form that is fed into the convolutional neural network.
092 This, combined with the large memory and processing power requirements for efficiently running
093 convolutional neural networks at this scale, ruled this model out for our purposes.

094 We also considered the methodology proposed by Socher, Et. al in "Parsing Natural Scenes and
095 Natural Language with Recursive Neural Networks" [6]. This involved training a recursive neural
096 network with some type of labeling. However, there were a number of situational problems that came
097 up as we attempted this strategy. The first issue was that not every review had a label associated with
098 it, whether this was a star rating or a usefulness rating as determined by other users voting on the
099 review. The usefulness rating, specifically, was very sparse across the entire dataset, and the lack of
100 normalization of the metric (it is a counted, rather than averaged, metric, it is optional for users to
101 vote on usefulness, and thus reviews that are more viewed are always viewed as more useful) made it
102 impossible for us to use in a logical manner. Using the reviewer's own rating reeked of confirmation
103 bias, and thus we avoided this strategy.

104 3 Approach

105 Fundamentally speaking, our technical approach revolved around two different steps: encoding re-
106 view information in vectors, and using these vectors to extract key phrases that capture the essence of
107 the reviews for a given place of business. As reviews are generally composed of sentence-level con-

108 cepts, we focused our vectorization and extraction efforts on individual sentences. We now describe
109 our efforts to complete both of these steps respectively.
110

111 3.1 Learning Sentence Vector Representations 112

113 Our baseline approach for learning sentence vectors was formulated using a simple bag-of-words
114 model to extract frequency information from the reviews for a single business; this corresponded
115 to a frequentist statistical approach that is very naive and abandons all semantics and meanings
116 in favor of merely counting occurrences. Thus, the size of the vector is roughly the size of the
117 vocabulary set (collapsed down to a lower fixed dimension based on the most common words) and
118 the value at each vector index i represents the count of word i in the sentence. We expected this to
119 perform moderately well but not outstandingly, as frequency and word counts are poor-to-mediocre
120 approximators of true meaning and linguistic nuances are beyond the scope of a basic bag-of-words
121 model.

122 The word-vector-based model we used was Word2Vec, proposed by Mikolov et al. from Google.
123 This unsupervised model learns vector representations for words using provided corpora. For this
124 model to be useful for sentences, rather than discreet words, we employed the naive strategy of
125 summing all learned word vectors for a sentence together and using this additive result as a sentence
126 vector; we did this for simplicity of dimensioning, as the sum of two n -dimensional vectors is still
127 an n -dimensional vector, allowing variable length sentences to be collapsed into fixed-length vector
128 representations. However, we also considered point-wise multiplication and concatenation as other
129 conversion strategies for converting word vectors to sentence vectors.

130 We also learned representations of the different sentences used in reviews following the methods
131 described in the paper “Distributed Representations of Sentences and Documents” [2]. This recent
132 publication is in effect an extension of the Word2Vec algorithm; it learns not only word vectors, but
133 also representational vectors for a specific ‘context’ structure of arbitrary length and composition.
134 For our purposes, this ‘context’ will obviously be a sentence, as learning sentence vectors will allow
135 us to represent sentence meanings with a series of numbers.

136 It is also worth noting that there are two distinct options for training all of these models: training the
137 models on the entirety of our dataset, or training a different model for each place of business and the
138 reviews pertaining to it. There are a number of pros and cons to both approaches. Training on the
139 entire dataset will allow our learned word vector representations, in all models, to be more accurate
140 from a universal perspective. However, training on a large dataset is decidedly more computationally
141 intensive. Additionally, the meaning of a word in the context of a specific place of business
142 might be subtly different than the ‘universal’ meaning of a word, and per-review subtleties will be
143 overwhelmed by the sheer weight of the entire dataset. On the flipside, training a model specific
144 to each place of business will be much quicker (by many many orders of magnitude) than training
145 on the entire dataset, and a per-business model might more accurately capture the meanings of the
146 words and sentences as they pertain to specific reviews for this specific business. However, there
147 is also a lot less data on which to train these models, and thus the models are also susceptible to
148 outliers and vaguely trained or untrained words.

149 In light of these considerations, we chose to train all our models on a per-business basis, thus al-
150 lowing for more localized vector expressiveness and a more pertinent-to-business representation.
151 We also culled out stop words for the Bag of Words models, but not for the neural network based
152 models. These results will be summarized in the Experiment section below.

153 3.2 Extracting Key Phrases 154

155 Our approach for extracting the key sentences for a business from these learned vectors was based
156 on k -means clustering. Namely, we took the review sentence vectors we generated and clustered
157 them into k clusters. After this, we took the most central sentence from each cluster as “charac-
158 teristic” representation of the cluster. We experimented with a variety of hyperparameters in this
159 instance, such as the number of cluster centers, the distance metric used (i.e. Euclidean/Cosine, L1,
160 Chebyshev). We also considered experimented with simply taking sentence vectors that are “far
161 apart,” distance wise, and returning them; logically, this would give us sentence vectors that repre-
162 sent unique ‘opinions.’ However, after some basic experimentation, we realized that this did not take

162 into account the weight of popular opinion. A contrived example of this is as follows: if 6 people
163 said that a restaurant was fantastic and a single sentence said a restaurant wasn't, unfortunately that
164 outlier sentence will be included in the summary since it is "far apart" from the other sentences.
165 *k*-means clustering accomplishes essentially the same task as picking "far apart" sentence vectors,
166 with a lot more robustness, and as such we chose to use it exclusively.
167

168 4 Experiment 169

170 4.1 Dataset 171

172 For our project, we used the Yelp challenge dataset [7], a publicly released dataset curated by Yelp
173 that includes business and review data collected on www.yelp.com from over 10 cities and 4
174 different countries. This data is very large in scale as it contains 1.6M reviews by 366k users for 61k
175 businesses as well as 481k business attributes (hours, parking availability, etc.). This data has been
176 publicly released by Yelp for use in academic research and projects.
177

178 Obviously, with so much data, memory and resource management becomes a huge concern. The
179 overall dataset weighs in at 1.43 GB of raw JSON, and to even read parse all the data into business-
180 sized chunks was a lengthy and resource-intensive operation. In order to test the viability of our
181 approach, which is inherently unlabeled and unsupervised, we elected to use a randomly chosen
182 subset of the data, containing exactly 1000 places of business and the reviews pertaining to them.
183 We also threw out any businesses that had under 5 reviews, since our goal was to output anywhere
184 from 3-6 "key sentences" from each business' reviews.
185

186 4.2 Evaluation

187 A major difficulty with performing a summary task is evaluating its correctness and efficacy for
188 real world use. Unfortunately, the Yelp dataset does not come prelabelled with anything other than
189 review score and (occasionally) usefulness ratings; review score rarely, if ever, has any bearing on a
190 specific sentence's importance, and as we mentioned before, the usefulness ratings are unnormalized
191 and cannot be used to distinguish individual sentences that are relevant for a summary. As such, we
192 were forced to look to manual methods to evaluate our methods' success.
193

194 The canonical metric used to evaluate automatic summarization is ROUGE, which stands for Recall-
195 Oriented Understudy for Gisting Evaluation. The software package that comes with the official
196 version of ROUGE compares a computer-generated summary against a set of human-generated refer-
197 ences, with varieties based on n -gram co-occurrence, longest continuous subsequence, and others
198 [3]. Given time and financial constraints, we chose to create our own ROUGE-like evaluation metric
199 named YELP (acronym to be determined). YELP is quite simple in theory: a human goes through
200 and picks out any and all key sentences that he or she would like to see included in a summary of the
201 reviews for a business. Then, the sentences spit out by the summarizer are compared to these "key"
202 sentences, and the accuracy score is the number of truly "key" sentences, as picked by the human,
203 divided by the total number of key sentences returned by the algorithm. Optimizing for this metric
204 roughly corresponds with the concept of "precision" detailed earlier, as it reveals the percentage of
205 returned sentences that are relevant to the overall summary. The concept of "recall," while another
206 important metric, is less relevant to our topic given the way we have (painstakingly) labeled the data;
207 since we are including all sentences that we would accept in a good summary in our ground-truth
208 reference, our recall will necessarily suffer. Thus, we evaluate on precision exclusively, leaving re-
209 call optimization as a dataset-labeling exercise for the future. In total, we were able to hand-label
210 100 places of business, totalling about 15,000 sentences worth of text.
211

212 Additionally, in order to try to account for the randomness of our experiments and clustering, we set
213 the **numpy** random seed to be 1234 wherever appropriate and possible.
214

215 4.3 Trials and Results

216 In order to optimize our results, we employed grid-search based hyperparameter tuning. Simply, we
217 started with a coarse grained search to find optimal regions for our hyperparameters and then nar-
218 rowed our search in these regions. The first table below demonstrates our results for the Naive Bag
219

216 of Words and Additive Word2Vec models, which consistently performed worse than our Paragraph
 217 Vector model. The second table shows the results for our Paragraph Vector model, which earned
 218 our maximum precision score of about 58%. We also provide a three dimensional plot that shows
 219 precision as a function of dimensionality and training epochs for our Paragraph Vector models.
 220

Trial	Model	Dimension	k	Epochs	Precision
I	Naive BoW	100	3	N/A	52.00%
II	Naive BoW	100	5	N/A	48.80%
III	Naive BoW	200	3	N/A	50.67%
IV	Naive BoW	200	5	N/A	50.40%
V	Naive BoW	500	3	N/A	48.00%
VI	Naive BoW	500	5	N/A	48.00%
VII	Naive BoW	1000	3	N/A	48.00%
VIII	Naive BoW	1000	5	N/A	48.00%
IX	Naive BoW	50	3	N/A	53.33%
X	Naive BoW	50	5	N/A	52.80%
XI	Naive BoW	50	3	N/A	51.67%
XII	Naive BoW	50	5	N/A	50.40%
XIII	Word2Vec	100	3	10	37.33%
XIV	Word2Vec	100	5	10	44.80%
XV	Word2Vec	100	3	50	53.33%
XVI	Word2Vec	100	5	50	47.20%
XVII	Word2Vec	100	3	100	44.00%
XVIII	Word2Vec	100	5	100	43.20%
XIX	Word2Vec	100	3	75	45.33%
XX	Word2Vec	100	5	75	46.40%
XXI	Word2Vec	200	3	50	53.33%
XXII	Word2Vec	200	5	50	48.00%
XXIII	Word2Vec	400	3	50	49.33%
XXIV	Word2Vec	400	5	50	46.40%
XXV	Word2Vec	800	3	50	54.67%
XXVI	Word2Vec	800	5	50	50.40%
XXVII	Word2Vec	1600	3	50	45.33%
XXVIII	Word2Vec	1600	5	50	51.2%

249 Table 1: Results of Coarse-Grained Trials for Naive Bag of Words and Word2Vec Models
 250

Trial	Dimension	k	Epochs	Precision
I	25	3	10	56.00%
II	25	3	50	56.00%
III	25	3	100	57.33%
IV	50	3	10	53.33%
V	50	3	50	53.33%
VI	50	3	100	50.67%
VII	100	3	10	48.00%
VIII	100	3	50	48.00%
IX	100	3	100	49.33%
X	300	3	10	53.33%
XI	300	3	50	53.33%
XII	300	3	100	44.00%
XIII	600	3	10	52.00%
XIV	600	3	50	52.00%
XV	600	3	100	49.33%
XVI	1000	3	10	54.67%
XVII	1000	3	50	54.67%
XVIII	1000	3	100	52.00%

269 Table 2: Results of Coarse-Grained Trials for Paragraph Vector Model
 270

```
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288
```

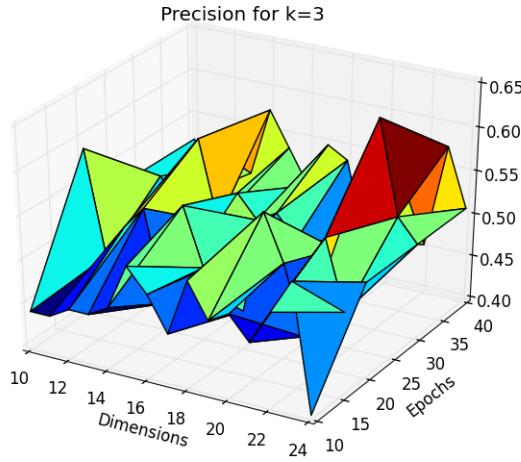


Figure 1: Precision vs. Hyperparameters for $k = 3$

```
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314
```

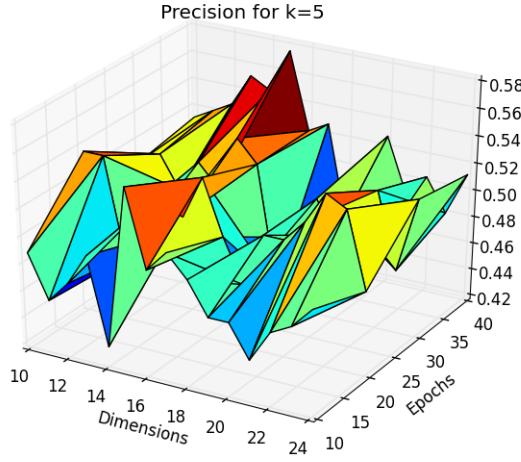


Figure 2: Precision vs. Hyperparameters for $k = 5$

4.4 Analysis

All of our models experienced varying levels of success on the summarization task. As shown in the tables above, the Naive Bag of Words model was remarkably performant for its simplicity, achieving precision scores quite similar to the Additive Word2Vec model across different hyperparameters and clustering regimes. The best BoW model, averaged across the $k = 3$ and $k = 5$ precision scores, was the 200-dimensional version. It is interesting to note that, in general, lower-dimensional BoW models performed better than higher dimensioned ones; since the lower dimensioned models only accounted for the most frequent (non-stop) words, this result makes some sense, as forcibly including less common or less relevant words in a statistical approach will just add noise to the result, as these less common words don't have any meaning to them from an algorithmic perspective.

324 The Additive Word2Vec model did end up outperforming the Naive BoW model, but only barely.
325 It was much more sensitive to hyperparameter tuning, and searching for optimal hyperparameters
326 was a challenging exercise. The best Word2Vec model had 800-dimensional word vectors and was
327 trained for 50 epochs on each business' review data, and it achieved an average precision of about
328 52.54% on the combined $k = 3$ and $k = 5$ tasks. The Word2Vec model appears to benefit from
329 training for more epochs and higher word vector dimensions, especially for the more challenging
330 $k = 5$ task. However, the limitations of the Word2Vec model as it applies to a full sentence worth
331 of words are readily apparent - Word2Vec might be outstanding at representing individual word
332 semantics, but it struggles when a large array of word vectors are summed in order to represent a
333 sentence.

334 The Paragraph Vector model performed the best of all our models, and was able to learn remarkably
335 compact and effective (as small as 10 to 50-dimensional) representations of sentences. It was also
336 the slowest to train, as one would expect for a model of its complexity. It achieved a maximum
337 $k = 3$ performance of 58.66% and a maximum $k = 5$ performance of 57.33%. Numerically, these
338 top-scoring models outpaced all other models by over 5%.

339 4.5 Examples and Analysis of Results

340 We also visually inspected the returned results of the Paragraph Vector model, in order to subjec-
341 tively determine whether they would be good fits for a Yelp summarization. Some characteristic
342 examples are shown and commented on below.

343 Positive Examples

344 Example 1: St. Mary's Basilica

345 This was our third trip to the Phoenix/Scottsdale area this year, and this was the
346 third church that we attended in the area.
347 The masses are beautiful and the people are friendly and welcoming!
348 The wedding was a full Mass and made it such a special day for my sister, her
349 husband, myself and everyone who witnessed the ceremony.
350 During the holidays, I make sure I attend mass at St. Mary's Basilica.
351 It reminds me of being back East and the time I spent traveling abroad .

352 We can see in this positive example, which is the summary for a Catholic church, that the model
353 does a good job of extracting relevant thoughts on the church. Namely, the model extracts relevant
354 information about the quality of the mass at the church as well as reviews that emphasize how they
355 make sure to attend the church and that the people are great. Compared to the unfiltered review text,
356 which contains tons of anecdotal filler that isn't directly pertinent to the quality or characteristics of
357 the church, this summary is definitely superior.

358 Example 2: Chuy's Restaurant

359 Seems like all of their locations are pretty similar.
360 Chuy's was pretty good.
361 I'm pretty forgiving but I can't forgive the junk they cooked here.
362 I've been to Chuy's in Tucson for dinner, which is always have had a good experi-
363 ence with it being that it is a total hole in the wall.
364 Chuy's is always going to be a good choice for mesquite when you need a quick
365 bite!

366 The extracted sentences for Chuy's Restaurant also show promising results. In particular, the sen-
367 tences extracted comment on the quality of the food at the restaurant and what types of settings you
368 might want to go to it for. Other key points emphasize the strength of the experience and the simi-
369 larity of the locations of the chain restaurant. While the results are not perfect, they do demonstrate
370 the diversity of opinions that any one business could have, with one person claiming that the food
371 was "junk". The strength of this summary is, again, that impertinent anecdotes and filler sentences
372 are stripped out, leaving only key opinions behind.

373 Example 3: Harbor Lake Therapeutic Massage

378 He can also work on your TMJ problems.
379 I have arthritis in all my joints and he has been able to keep me moving and active.
380 My therapist is Larry and he is terrific.
381 They are that good.
382 Larry can get the kinks out of my neck and shoulders like no one can.
383

384 The final example we examine that demonstrates the strength of our model is the summary for
385 Harbor Lake Therapeutic Massage in Las Vegas, NV. All 5 of these sentences develop a consensus
386 that this is an incredibly high quality massage therapy parlor that can help you work through issues
387 you may be having. The sentences show a positive sentiment towards the business in a variety of
388 different uses.

389 **Negative Examples**

390 Example 1: United Artist's Theatre

391 They have a special seating area in the theater but I understand they coat \$5.00
392 more.
393 I consider a "new school" theater to be one with stadium seating.
394 My fiance's work gave him two sets of Regal movie tickets.
395 Another plus is that it is about a mile from my house.
396 I used to go out of my way to come here, simply to avoid the crowds.
397

398 This review is for United Artist's Theatre in Scottsdale, AZ. The sentences picked out here have the
399 general problem of having irrelevant information. The first sentence talks about a "special seating
400 area" but gives very little information on whether it is something that would be interesting. The next
401 talks about the author's views on what a "new school" theatre is, completely irrelevant to information
402 about the quality of the business. The last few sentences talk about very personal things that have
403 nothing to do with the quality of the business.
404

405 Example 2: Eagle Crest Golf Course

406
407 what is this mexico?
408 This review is for the practice facility only, I have never played the course.
409 WOW, how about not serve it if it is full of black things?
410 So we took our time and really enjoyed ourselves.
411 We went on a friday morning and there were very few other golfers.
412

413 The summary for Eagle Crest Golf Course in Las Vegas, NV, also has some questionable results.
414 Most of the key sentences picked out here have nothing to do with the quality of the experience
415 at the golf course. The first sentence picked here is a complete non-sequitur. Again, this result
416 demonstrates the difficulty of picking out strictly relevant sentences to summarize the review and
417 how this was not always a given with our model.

418 Example 3: Tri-Color Locksmith

419
420 Many thanks to Dave and Tri-Color!
421 The tech Joey was very friendly and had the job done in no time.
422 I won't call another locksmith again.
423 Over and over again the folks at the store made me feel like a jerk that they had to
424 rescue from utter incompetence.
425 I called Tri-color expecting to have them come out in the next day or so.
426

427 While the results in this example, for Tri-Color Locksmith, are unlike the other negative examples in
428 that they all contain relevant information, we wanted to highlight this example as it is characteristic
429 of part of the problem. While some of the sentences here demonstrate really positive experiences
430 with the business, and in particular the service of the business, others have the exact opposite senti-
431 ment. This is part of the problem of this summarization problem - it can be impossible to summarize
opinions or form any consensus when the opinions are so varied.

432 **5 Conclusion**
433

434 Our models demonstrated that there is good potential for accurately summarizing keypoints of Yelp
435 reviews. We recognized the potential for our models to extract mostly relevant and interesting sen-
436 tences, even though some of these might not aptly be described as a summary of the reviews. How-
437 ever, it is important for us to reiterate the challenge of completing this task given the difficulty of the
438 task even for humans. In particular, things that are relevant to one human may be completely irre-
439 relevant to another human. We also struggled to discern a clear and obvious consensus for particular
440 businesses. In many cases, there were a number of reviews with completely contradictory messages.
441 For example, the first review we hand-labeled was for a hair salon in which the first 3 reviews said it
442 was an amazing hair salon and the next 3 said it was the worst place ever and they'd never return; in
443 this situation, what was the proper summary to take away? Given the difficulty for humans such as
444 ourselves to perform this task, we wonder if we have defined the problem in a manner that makes it
445 difficult to really properly measure how we did. In response to this, we have considered redefining
446 the problem to include elements of sentiment analysis. In particular, we consider the possibility of
447 performing this task with either aspect specific sentiment analysis or just summarization of positive
448 and negative sentiments, which could also be aspect specific if need be. Given the results we do
449 have, it could prove very useful to merely print out the k cluster centers as determined by our algo-
450 rithm and also return the number of other sentences that map to these centers, as this would prove
451 slightly more informative for a user and give more weight to frequently expressed opinions. Alterna-
452 tively, we are considering a proposed solution that revolves around a different strategy for sentence
453 extraction than clustering. We propose the possibility of using Mechanical Turk to label sentences
454 as key points or not key points and training on these labels in order to learn what an "important"
455 sentence looks like. This would allow us to then identify key sentences dynamically and would also
456 solve the issue of having different numbers of key points for different businesses.
457

458 In addition, we have considered the possibility of attempting this with other methodologies. We
459 would like to try using models such as a Tree-LSTM or a ConvNet that might be able to capture
460 different representations of the sentences in a more successful manner.

461 **References**

462 [1] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. "A convolutional neural network
463 for modelling sentences". In: *arXiv preprint arXiv:1404.2188* (2014).
464 [2] Quoc V Le and Tomas Mikolov. "Distributed representations of sentences and documents". In:
465 *arXiv preprint arXiv:1405.4053* (2014).
466 [3] Chin-Yew Lin. "Rouge: A package for automatic evaluation of summaries". In: *Text summa-
467 rization branches out: Proceedings of the ACL-04 workshop*. Vol. 8. 2004.
468 [4] Tomas Mikolov et al. "Efficient Estimation of Word Representations in Vector Space". In:
469 *arXiv preprint arXiv:1301.3781* (2013).
470 [5] Jeffrey Pennington, Richard Socher, and Christopher D Manning. "Glove: Global vectors for
471 word representation". In: *Proceedings of the Empirical Methods in Natural Language Pro-
472 cessing (EMNLP 2014)* 12 (2014).
473 [6] Richard Socher et al. "Parsing Natural Scenes and Natural Language with Recursive Neu-
474 ral Networks". In: *Proceedings of the 26th International Conference on Machine Learning
475 (ICML)*. 2011.
476 [7] Yelp. *Yelp Dataset Challenge*. URL: http://www.yelp.com/dataset_challenge.
477

478
479
480
481
482
483
484
485