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Abstract

Recommendation systems play an extremely important role in e-commerce;
by recommending products that suit the taste of the consumers, e-commerce
companies can generate large profits. The most commonly used
recommender systems typically produce a list of recommendations through
collaborative or content-based filtering; neither of those approaches take
into account the content of the written reviews, which contain rich
information about user’s taste. In this paper, we evaluate the performance of
ten different recurrent neural network (RNN) structure on the task of generating
recommendations using written reviews. The RNN structures we study include
well know implementations such as Multi-stacked bi-directional Gated
Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) as well as novel
implementation of attention-based RNN structure. The attention-based structures
are not only among the best models in terms of prediction accuracy, they also
assign an attention weight to each word in the review; by plotting the attention
weight of each word we gain additional insight into the underlying mechanisms
involved in the prediction process. We develop and test the recommendation
systems using the data provided by Yelp Data Challenge.

Introduction:

The rise in popularity of review aggregating websites such as Yelp and Trip-Advisor has led
to an influx of data on people’s preference and personality. The large repositories of user
written reviews create opportunities for a new type of recommendation system that can
leverage the rich content embedded in the written text. User preferences are deeply ingrained
in the review texts, which has an amble amount of features that can be exploited by a neural
network structure. In this paper, we conduct a comparative study of ten different recurrent
neural network recommendation models.

A well-known issue with models that attempt to make prediction for a particular user base on
that user’s data is the inherent data sparsity. A typical user tends to generate only a small
amount of data, despite the large overall size of the corpus. Many innovative methods have
been invented to resolve the data sparsity issue [1][2][3]. Since our interest is to supply the
model with adequate data in order to capture the user preferences, we decide to find the
nearest neighbors for a given user base on their preferences and train the model using the
reviews from all the users in the nearest neighbor cluster.



To create the input to our RNN models, we convert each word in the review text into
distributed representation in the form of word vector; each word vector in the review
document serves as input to a hidden layer of the RNN [4]. The output of the model is a
prediction of the probability that a user will like the particular restaurant associated with the
input review. Each cluster of users has its own model trained using the reviews in the
corresponding cluster.

We employ a bottom-up approach to create different RNN structures. We begin by examine
the performance of two RNN architectures (GRU and LSTM) that curb the vanishing
gradient problem [7][8], next we enhance our models ability to capture contextual
information by adding bi-directionality, lastly, we increase our model’s interpretability of
complex relationships by stacking multiple hidden layers. In addition to implementing known
model structures, we also create a new attention-based RNN model that collects signals from
each hidden layer of the RNN and combine them in innovative ways to generate prediction.
The attention-based model addresses the issue of reliance on the last layer to capture
information embedded in all previous layers; this model also assigns an attention measure to
each word in the review, the attention measure indicates the amount of attention the model
allocates to each word.

1 Related work

The RNN is an extremely expressive model that learns highly complex relationships from a
sequence of data. The RNN maintains a vector of activation units for each time step in the
sequence of data, this makes RNN extremely deep; the depth of RNN leads to two well
known issues, the exploding and the vanish gradient problem [7][8].

The exploding gradient problem is commonly solved by enforcing a hard constraint over the
norm of the gradient [9]; the vanishing gradient problem is typically addressed by LSTM or
GRU architectures [10][11][12]. Both the LSTM and the GRU solves the vanishing gradient
problem by re-parameterizing the RNN; The input to the LSTM cell is multiplied by the
activation of the input gate, and the previous values are multiplied by the forget gate, the
network only interacts with the LSTM cell via gates. GRU simplifies the LSTM architecture
by combing the forget and input gates into an update gate and merging the cell state with the
hidden state. GRU has been shown to outperform LSTM on a suite of tasks. [8][13]

Another issue inherent in the uni-directional RNN implementation is the complete
dependency of each layer’s output on the previous context. The meaning of words or
sentences typically depend on the surrounding context in both directions, capturing only the
previous context leads to less accurate prediction. An elegant solution to this problem is
provided by bi-directional recurrent neural networks (BiRNN), where each training sequence
is presented forward and backward to two separate recurrent nets, both of which are
connected to the same output layer. [14][15][16]

Recent implementation of multiple stack RNN architecture has shown remarkable success in
natural language processing tasks [18]. Single layer RNNs are stacked together in such a way that
each hidden state’s output signal serves as the input to the hidden state in the layer above it. Multi-
stacked architecture operates on different time scales; the lower level layer captures short-term
interaction, while the aggregated effects are captured by the high level layers [17].

The latest development of incorporating attention mechanisms into RNN enables the RNN model
to focus on aspects of a document that it believes to deserve the most amount of attention. The
attention mechanism typically broadcast signals from each hidden layer of the RNN, and make
prediction using the broadcast signal. Attention-based models have produced state of art results in
a wide range of natural language and image processing tasks. [19][20][21][22]



In this paper we evaluate all model structures mentioned above on the task of generating
recommendation based on review text. We also implement a novel attention-based model that has
never been studied before.

2 Dataset

We used the dataset publicly available from the Yelp Dataset Challenge website.!'! The
dataset provides five JSON formatted objects containing data about businesses, users,
reviews, check-ins and tips. We only used data from business, user and review JSON objects.
The business object holds information such as business type, location, category, rating, and
name etc. The review object contains star rating and review text. The yelp corpus contains
2225134 reviews for 77445 businesses written by 552339 different users. We reduced the
size of the corpus to 1231275 reviews from 27882 different eateries (cafes, restaurants and
bars).

To overcome the inherent data sparsity in individual user data, we cluster users into groups
base on their preferences using k-nearest neighbor method described in [2]. We focus our
experiment on a cluster that contains eight prolific reviewers with 4800 reviews, we divide
this review dataset into training-set (4000 reviews), validation-set (400 reviews) and test-set
(400 reviews). Each word in the review documents is converted into a 300 dimensional word
vector representation using the pre-trained GloVe dataset [5].

In order to simplify the implementation of our RNN models, we normalize each review to
200 words; this is accomplished by stripping words that come after the 200™ word in reviews
with more than 200 words, and padding reviews with less than 200 words using repetition of
the last sentence in the review. The number 200 is chosen base on statistics collected from
the review corpus:

*  63% reviews ~ +/-25 from 200 words
7% reviews had less than 150 words and 13% has more than 250 words.
e Overall 80% of the reviews have between 150 to 250 words.

The above statistical observation indicates normalizing review text to length 200 should not
significantly alter the information contained in most of the documents. The ideal approach is
to build RNN models that can dynamically handle variable review length, in the interest of
time, we decide to leave this implementation as part of future improvement.

3 Technical Approach and Models

3.1 General Approach

We implement ten different RNN models, each model takes reviews of a restaurant as input
and classify the restaurant as favorable or unfavorable for a user.
We divide the restaurant reviews into the following two categories:

Favorable : reviews with 4 or 5 star ratings

Unfavorable : reviews with 1 or 2 star ratings

Each word vector in the review text is feed into a hidden layer of the RNN model; the final
output goes through a soft-max function and returns a probability for each class label. We

(1]

https://www.yelp.com/dataset challenge
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used the cross-entropy loss as the cost function to train the model; the true class labels are
represented as one-hot vector.

In practice we must develop a different model for each cluster, and generate a prediction that
applies to all users in a cluster. To limit the scope of this comparative study, we only develop
models for the cluster described in the data section.

3.2 Model Selection

We first compare the performance between GRU and LSTM on this specific prediction task,
the result indicates the GRU structure performs slightly better than LSTM!". Using the GRU
as the RNN cell, we implement single, double, triple, and quadruple stacked bi-directional
model; the same implementation procedure is also employed to implement four stacked bi-
directional attention-based structure. (Figure 1)

Start with structure that curbs vanishing gradients

LSTM (single layer) GRU (single layer)

Pick best
RNN

structure

GRU Wins!!
Rather than relying on the last layer

The meaning of each word depends on
both previous and future contexts

Bi-directional GRU
(single layer)

to capture all previous information,
let each word speak for themselves

Attention-based Bi-directional
GRU (single layer)

Increase the depth of
Bi-directional GRU to
capture deeper
relationships

Increase the depth of
the network to capture
deeper relationships

Bi-directional GRU
(multiple layer)

Attention-based Bi-directional
GRU (multiple layer)

Figure 1: Model Selection Flow

3.3 Bi-directional RNN (BiRNN) Model Description

BiRNN consists of forward and backward RNN structure (GRU cell). In the forward RNN,
the input sequence is arranged from the first word to the last word, and the model calculates
a sequence of forward hidden states. The backward RNN takes the input sequence in reverse
order, resulting in a sequence of backward hidden states. To compute the final prediction, we
average the output from RNNs in both direction and then apply linear transformation to
generate the input to the softmax prediction unit. (figure 2)

The multi-stack BiRNN is constructed by stacking single layer BIRNN on top of each other.
The hidden state of each previous layer serves as input to the hidden state above it.
Intuitively, every layer treats the memory sequence of the previous layer as the input
sequence, and compute its own memory representation [18][22]. To compute the final
prediction, we average the output from the last layer’s RNNs in both direction and follow the
same prediction scheme described above. (figure 2)

(1]

We are using tanh as the activation function for all our experiments
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Figure 2: BiRNN with GRU Cell

3.4 Attention Mechanism Model Description

A standard RNN model must propagate dependencies over long distance in order to make the
final prediction. The last layer of the network must capture all information from the previous
states to make the prediction, this may make it difficult for the neural network to cope with
long document size. In our case, we fix the review length to 200 words, which is quite long.
To overcome this bottleneck of information flow we implement an attention mechanism
inspired by recent results in natural langue and image processing tasks. [19][20][21][22]

The attention-based model utilizes the same base BiRNN structure described in section 2.3,
the hidden state of each forward and backward GRU unit is concatenated into a single output
vector, this concatenated vector is transformed into a scalar value via a set of attention
weight vectors. The resulting scalar value from each hidden state is concatenated into a new
vector, this vector goes through an additional projection layer to generate the final
prediction. (figure 3)

Intuitively, the attention-based BiRNN implements a mechanism of attention in the model.
Attention weight vectors transform each hidden state into a scalar value that represents the
amount of attention the model pays to the input word in the hidden state. Plotting the
attention value of each word in the document reveals that the model tends to make correct
predictions when it focuses more on the expressive words. (more discussion in the result
section)
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Figure 3: Attention Based BiRNN with GRU cell

4 Experiments & Results

4.1 Evaluation Metric and Hyper-Parameter Tuning

We use an off the shelf support vector machine (SVM) as the baseline for our model''). We
collect a total of 4800 review documents from 8 users, each word in the review is converted
into 300 dimensional vector representation using GloVe [5]. We use cross-validation to train
each model; roughly 80% of the data is used as training set, 10% is used as validation set
and the remaining 10% is used as test set. Mini-batch gradient descent (batch size 50) is used
as the search algorithm. All hypermeters are tuned using the validation set. The final
accuracy for each model is measured as the percentage of correct prediction on the test set.

For single layer, uni-directional LSTM and GRU we consider hidden activation unit size [64,
128, 256], learning rate range [0.001, 0.005, 0.0001, 0.0005], dropout range [1, 0.9, 08, 0.6];
in the case of LSTM we also consider forget bias range [0.1, 0.3, 0.5, 0.8, 1]. For Bi-
directional GRU we consider hidden layer size [64, 128, 256], learning rate range [0.001,
0.005, 0.0001, 0.0005], dropout range [1, 0.9, 08, 0.6]. For attention based bi-directional
GRU we consider hidden layer size [64, 128, 256], learning rate range [0.001, 0.005, 0.0001,
0.0005], dropout range [1, 0.9, 08, 0.6] (The bolded underline value represents the
parameters selected). Adapting selected hyper-parameters, we measure the prediction
accuracy for different level of stacks. (Table 2)

(1 We use SVM implementation from sklearn library (python). We use the SVC implementation of SVM, which internally
is based on libsvm. The Kernel is 7bf” and penalty parameter is set to /.0. We use default values provided by the library
for all the optional parameters like: degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=1e-3,
cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None



228 4.2 GRU V.S. LSTM

229  GRU and LSTM have similar performance, both of them performs slightly better than the
230  SVM baseline. (Figure 4, table 1)

Epoch V.S. Accuracy

P i
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==GRU Train
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04 ==={STM Validation
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’ 0 5 10 15 20 25 30 35 a0
23 1 Epoch
232 Figure 4: Epoch V.S. Accuracy for GRU and LSTM
233
Train Accuracy Validation Test Accuracy
Accuracy
SVM 87.25 82.00 76.25
GRU 99.60 93.25 82.75
LSTM 93.70 87.00 81.74
234 Table 1: GRU V.S. LSTM V.S. SVM
235

236 4.3 Multi-stack BIRNN V.S Attention-Based Multi-stack BiRNN

237 As expected, BiRNN out-performs uni-directional RNNs, and multi-stacked BiRNN out-performs
238  the single stack BIRNN. We observe that the accuarcy does not always increase as we increase
239 the number of stacks, this may due to the fact that aggeration of deeper meanings is optimally
240 captured in certain depth. Attention-based model shows very similar accarucy measurement
241 compared to BiRNN, especially in stack three; this is an indication that three stack structrue
242 captures the best aggregate effect. To make the final prediction in the BiRNN setup, we are
243 averaging the output of RNN from both directions, thus, the BiRNN model does not surfer the
244 issue of reliance on a single layer to capture all previous information; this could be the reason for
245  the slight better performance of the BIRNN model. (table 2)

246
STACK 1 STACK 2 STACK 3 STACK 4
Bi-directional RNN 85.25 86.00 87.50 87.00
Bi-directional RNN 82.75 84.25 87.00 85.25
with Attention
247 Table 2: BiRNN and BiRNN-attention test accuracy per stack
248

249 4.4 Paid Attention

250 The attention model transforms the output of each hidden state into a scalar value via a set of
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attention weights, each scalar is then used to generate the final prediction. The scalar value
produced from each hidden state can be interpreted as the attention paid by the model to each
input word in the hidden state. Fgure 5 shows a correctly classified review with the top 10 words
ranked by attention-value colored in green, their size is proportional to their attention-value. We
observe that the model paid large amount of attention to expressive and meaningful words. Figure
6 shows an incorrectly classified review with the top 10 words ranked by attention-value colored
in green, their size is proportional to their attention-value. We observe that the model paid larger
attention to inexpressive and meaningless words. This is a general trend we observe in all reviews
studied, the attention model tends to make correct prediction when it pays large amount of
attention to expressive words, and it tends to make incorrect prediction when it spends most of its
attention on inexpressive words.

Correctly classified negative review Wrongly classified positive review

: “There’s a ton I really liked the food here i would be kidding mysel if fwrote
“They must be the poorest quall ty meatin another disaster on the f

. . that | remembered what r/brdered but it was vegan the menu is enormous
start of my EVETIING, I rarely ever have issues with service or bother to complain

and it took us about minutes to get through it however the staff never rushed

on yelp but this waiter with glasses and a touch of gray hair was g orant he us in fact they offered assistance in deciphering What we might best be suited
muffed one a[fh € orders even after we had told him multiple times what we wanted for andyou know what else is great they actually play indian music in the
the dish came out way wrong as predicted he also didn’t answer my standard white

. background and have an indian hostessforentrees a mango lassi an app a garlic
meat chicken question instead choosing to tell us how even if the meat

is mixed it is usually good at other places, the manager did tell us to leave without naan bucks with a coupon bucks had plenty 0/’9me"’Sf0r""‘”hf”7'E“’ check out
paying for our drinks so we got the best deal out of a bizarre dining experience the store next door it has those microwave indian stews that you add rice these
avoid that Waiter" packets are so delicious ﬂndquick'

Figure 5 Figure 6
5 Conclusion and Future work

In this paper, we showed that neural network model is effective in predicting user perference base
on their reviews, we also demonstrated that multi-stack bidirectional RNN model and attention-
based RNN model produce more accurate prediction compared to single stack uni-directional
RNN model. Our experimental data indicated that increasing number of stacks does not always
imporve the model’s performance. Our novel implementation of attention-based model produced
attention demands for each word that provided additional insight into the classification problem. It
would be interesting to conduct a close up study of attention demand for each word in the review
corpus.

We believe the performce of the model can improve significantly using RNN implementation that
can handle variable review length, additionally, the yelp review corpus for restaurants contains
more than one million reviews, we used only a very small fraction of those, increasing our training
data size will surly improve the prediciton accuarcy. Furthermore, it would be interesting to
predict more than just two class labels, for instance we could expand the label class to like, neutral
and unlike. Another idea that is worth pursuing is to create an ensemble of neural networks for this
task, the prediction can be generated using a linear combination of the output from each model in
the ensemble set.
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