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Abstract

Automatic program generation allows end-users to benefit from greatly from in-
creased productivity. However, general Natural Language Programming tools fail
to provide the benefits of the ambiguity and expressivity of English. We reduce
program generation into a semantic parsing problem. Given a command and in-
put, we procedurally generate a large set of candidate programs, and then align the
command to a program using deep learning. We then use neural network models,
specifically recurrent neural networks, to predict the correct program. By restrict-
ing the domain to string operations, we show how we can perform reasonably
well..

1 Introduction

The ability to write programs greatly increases the productivity of the end user; however, for the
average person, learning how to program is out of reach. Automatic program generation would
solve that problem by obviating the need for users to learn how to program.

In this paper, we explore program generation. Given an utterance in English, we wish to
build a simple Java program, compile, execute, and return the result to the user. We provide
evidence that, in simple domains, we can reasonably tackle this problem. At a high level, we
approach program generation as a semantic parsing problem. We interpret each “parse” as a
program, and attempt to align user commands to corresponding programs.

2 Background/Related Work

Whereas the structure of a program is hierarchical and exact, English is ambiguous. This presents
immediate difficulties, and potentially makes it impossible to build large systems using natural
language. As Edsger Dijkstra discusses in ”On the Foolishness of ’Natural Language Program-
ming’”’[11], the formal symbolism of programming makes it easier to reason about programs, and
that any interface from English to machine code would necessarily induce many complexities. He
concludes by saying, "From one gut feeling I derive much consolation: I suspect that machines to
be programmed in our native tongues...are as damned difficult to make as they would be to use.”

Early iterations of Natural Language Programming certainly confirmed that suspicion. Below is an
example of Bubble Sort in Pegasus, one of the first Natural Language Programming languages[9].



Bubble Sort

Take the array [3, 5,7, 4, 6, 2, 1].

Print ”Before: ” and print the array.

Count from one up to the size of the array:

Go over the array from the beginning to the end minus the counter:
If the current element is bigger than the following element then exchange
the current element with the following element.

Print ”After: ” and print the array.

Although Pegasus certainly uses natural language, it is no less formal than C code, and is probably
longer. We don’t gain any productivity from writing the program in English. Over the last few
years, people have tried to incorporate NLP techniques to allow more ambiguity in the commands,
and have restricted the domain to some success. In 2012, Cozzie et. al[10] built Macho, a system
that maps user commands to simple unix commands like cp, grep, sort, etc., but requires the user to
provide a unit test to constrain the problem.

Most of the recent work on domain restricted Natural Language Programming is in Regina
Barzilay’s Lab at MIT. Branavan et. al[12][13] built a system that would read Windows trou-
bleshooting articles and execute the instructions using a search procedure. More recently, in 2014,
Kushman et. al[14] built a system that would solve algebra word problems by aligning the world
problem to a template, and then solving the linear system of equations given by the template.

3 Problem Statement

Let I denote the input, and let u denote a user command. For a given u, we generate a set of
candidate programs x. Each program p € x performs one or more operations on I. We score each
p € X, and choose the highest scoring program.

3.1 Domain

Our universe of programs consists of simple string operations on an ArrayList of strings. Each string
in the ArrayList is referred to as a ”group” (For example, the first group in (string abc) (string dbd)
(string 1dk) would refer to (string abc)). There are 3 groups in each example. The allowed operations
are as follows:

1. Prepending characters to a string (E.g. ”add ’afg’ to the front of the first group”.)
2. Appending characters to a string (E.g. ”add ’klj’ to the end of the middle group”)
. Removing characters from the front of a string (E.g. "remove ’b’ from ’bcfg’)

. Removing characters from the end of a string (E.g. “remove ’g’ from ’bcfg’)

. Swapping the location of two groups (E.g. ”switch groups 1 and groups 2”)

3
4
5. Reversing a string (E.g. “reverse the second group).
6
7. Doubling a string (E.g. “double group 3”)

8

. No Action (E.g. ”don’t do anything in this step”)

3.2 Dataset

To obtain our dataset, we first randomly generate length 3 ArrayLists of strings. We treat these
generated ArrayLists as a sequence, and use the allowed programs above to iteratively obtain the
next ArrayList in the sequence from the previous. We use Amazon Mechanical Turk to annotate
examples in the dataset with English descriptions of which program operations used to modify the
groups.



Table 1: Sample Task and Response

Step | Input User Command

1 AA BB CC

2 AAAA BB CC Double the first group

3 AAAA BB CCCC Double the last group

4 AAAA BB SUCCCCC Add ”SUC?” to the start of the last group
5 AAAA FOBB SUCCCCC | Add ”FO” to the start of the middle group
6 SUCCCCC FOBB AAAA | Swap the first and last groups

7 AAAA FOBB SUCCCCC | Repeat the previous step

8 SUCCCCC FOBB AAAA | Repeat the previous step

9 SUCCCCC FOBB AAA Delete the final letter of the last group
10 SUCCCCC FOBB FOAAA | Add "FO at the start of the last group

From the responses, we generate an example by taking the Input of the previous step, and the User
Command of the current step. Our examples are of the form: ”AA BB CC ||| Double the first group.”
where everything before the ||| is the input, and everything after is the command. The target value
in this case would be ”TAAAA BB CC”. We can construct an arbitrarily long number of commands
for each task. In this paper, we construct all length 1 (1 command) examples, and all length 2
(2 command) examples. In the one command case, we obtain 6127 training examples, 681 dev
examples, and 700 test examples. In the two command case, we obtain 2300 training examples, 700
dev, and 700 test examples.

3.3 Evaluation

We compare our results relative to oracle accuracy. An oracle is said to be “correct” if a program
that generates the desired output is contained in y. We say our model correctly predicts the program
if it chooses the same program that the oracle chooses. If x represents the number of correct oracle
programs, and y represents the number of correct model programs, then our accuracy is x/y.

4 Approach

We construct a grammar that is capable of performing all of the operations described in the Problem
Statement. However, due to the varied and expressive nature of natural language, it would be impos-
sible to build a robust system relying solely on pre-defined rules/templates. Therefore, we instead
overgenerate parses. Our approach follows the general guidelines of [4]: we “anchor” on certain
words in the utterance, and then use those “anchors” to recursively enumerate every possible parse
using those words. We then prune our parses using a scoring function. Whereas traditional scoring
functions in this method would use a linear combination of features derived from the parses, our
scoring function in this case relies on vector space embeddings of the words. We experiment with
the following embedding models: a simple linear embedding, a siamese neural network embedding,
and a recurrent neural network. Since we have the parse trees of our training examples with respect
to our grammar, we can apply our model on the parse trees to rank the order of parses. Let s(x, y) be
the score of the parse with respect to the training utterance y. Let 2™ be the correct parse, and m be
our margin. Let W (y) be the set of incorrect parses with respect to utterance y. Then we optimize
the following max-margin objective:

Z max (0,m — (s(z7,y:) — sz, i) (D
i@~ W (y:)

where x; is sampled uniformly and randomly from W (y;).

4.1 Linear Embedding

Inspired by the method in Bordes et. al [15], we use a simple linear embedding as a baseline. As in
[15], we set a parameter U € RV to define our word vectors. Then given inputs Uy, Ug € RIVIas
the one-hot sentence vectors indictating the presence of the words in our parse/utterance, we simply
set

s(z,y) = (Uva)" (Uvy) 2)



4.2 Siamese Network

We introduce nonlinearities on top of the basic idea of the linear embedding model - allow word
vectors for similar-denotation parse and utterance words to align, and separate word vectors for
different-denotation parse and utterance words. Our model is defined as follows:
Wy = Uy wy = Uv,
hy = tanh(Hw, +b) h, = tanh(Hw, +b)

s(z,y) = =[lha = hyll2

3)

4.3 Recurrent Neural Network

Motivated by the Siamese network, we adopt a recurrent neural network in a Siamese structure.
The main advantage of the RNN is that it allows us to better combine our word vectors rather than
summing over the one-hot sentence vector.

w® — [ w® — [
(ff) : (t=1) (t) (yt) . (t—1) (*) @
hy’ = tanh(Hh, =" +wy”) hy’ = tanh(Hh, ™ +w,”)
(@) = b — A

where vg(f), vét) are one-hot vectors for the parse and utterance words at time ¢, respectively, and [,

1y are the number of words in the parse/utterance, respectively.

4.4 Baseline

To compare deep learning methods against conventional feature scoring, we perform a baseline
evaluation using the general guidelines in [4]. We first construct a grammar that is expressive enough
to capture most of the correct parses in our training examples, achieving an oracle accuracy of 91.1%
in the 1 command case, and 76% in the 2 command case.

We then train feature weights in order to correctly score our parses. For any possible parse of
our input, we use unigram features, bigram features, function argument features, and a feature that
indicates whether the parse compiles as a program. More specifically, our unigram features are
defined as follows: for every word w in the utterance, and every function call f for the parse of that
utterance, we add an indicator feature corresponding to the tuple (w, f). Likewise, we define the
bigram features for every pair of words in the utterance. For example, for the utterance “add abc to
group 17, with a parse corresponding to the function call for “append”, the tuple (“add”, append)
would be a unigram feature with value 1. We compute the parse score as a dot product of feature
weights and our feature vector and then use a log-linear model over candidate parse scores to assign
a probability to each possible parse.

S Experiments

5.1 Results

Table 2: Results for 1 Command Dataset

Type Train Dev Test

Baseline 0.6371 0.6272 0.6221
Word Embeddings 0.6279 0.5425 0.5257
Siamese Network 2 0.8278 0.8105 0.8029
RNN 09711 0.9721 0.9685

Table 3: Results for 2 Command Dataset

Type Train Dev Test

Baseline 0.5631 0.5539 0.5578
Word Embeddings 0.2857 0.2409 0.2314
Siamese Network 0.5066 0.4152 04114
RNN 0.8273 0.8236 0.8171
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5.2 Sample Generated Programs (Correctly Generated)

Our programs are automatically generated using a variant of Java with Lisp-like syntax, which makes
it easier to sequentially apply functions and to procedurally generate/execute our set of programs.

Example 1 (One Command):

Input:ww pp eeee

Utterance: remove the last letter in the third group

Program: (derivation  (formula  (call  edu.stanford.nlp.sempre.SFun.remove  (call
edu.stanford.nlp.sempre.SFun.parseStartState (string “gggg nnnn xxiad”)) (number 3) (boolean
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Figure 1: Subset of Word Vectors trained on RNN

false)))
Output: gggg nnnn xxia

Example 2 (One Command):

Input:ww pp eeee

Utterance: at the end of group 3 add a

Program: (derivation  (formula  (call  edu.stanford.nlp.sempre.SFun.append  (call
edu.stanford.nlp.sempre.SFun.parseStartState (string ”ww pp eeee”)) (string a) (number 3)))
Output: ww pp eeeea

Example 3 (Two Commands):

Input: kk qqf wwt

Utterance: add kk to first group. remove k from first group.

Program: (derivation (formula ((lambda g (call edu.stanford.nlp.sempre.SFun.remove (var g)
(number 1) (boolean true))) ((lambda g (call edu.stanford.nlp.sempre.SFun.doubleGroup (var g)
(number 1))) (call edu.stanford.nlp.sempre.SFun.parseStartState (string "kk qqf wwt”)))))

Output: kkk qqf wwt

Example 4 (Two Commands):

Input: mm qq yy

Utterance: swap the first and third groups. cut the second group in half.

Program: (derivation (formula ((lambda g (call edu.stanford.nlp.sempre.SFun.remove (var g) (num-
ber 2) (boolean true))) ((lambda g (call edu.stanford.nlp.sempre.SFun.swap (var g) (number 1) (num-
ber 3))) (call edu.stanford.nlp.sempre.SFun.parseStartState (string "mm qq yy™)))))

QOutput: yy g mm



5.3 RNN Error Analysis

Table 4: Two Utterance Errors

Type of Error Proportion of Errors
Wrong Arguments 0.8657
Wrong Functions 0.8544

Correct Function, Wrong Arguments | 0.1455
Correct Arguments, Wrong Function | 0.1343

Our percentage of errors due to wrong arguments is higher than the percentage of errors due to
wrong functions. This is to be expected: If we have a wrong function, then more likely than not we
would have also supplied the incorrect arguments.

The most common error (occurred 6% of the time) is when fail to rank the identity function the
highest.

Example

Input: nn ww zz

Utterance: swap the 1 and 3 groups. undo the last operation

Correct Program: (derivation (formula (call edu.stanford.nlp.sempre.SFun.parseStartState (string
’nn ww zz”)))

Predicted Program: (derivation (formula ((lambda g (call
edu.stanford.nlp.sempre.SFun.reverseGroup (var g) (string 3))) (call
edu.stanford.nlp.sempre.SFun.parseStartState (string nn ww zz”))))

Analysis: The RNN predicts a program that reverses group 3, whereas the oracle parse does nothing
(applies identity function). However, the two outcomes are functionally the same, since reversing
”zz” does nothing. In the future, it would be better to explicitly model the “undo” operation, which
would probably make it easier for the neural network models to learn.

The second most common error (occurred 6% of the time) is using prepend instead of doubleGroup.
Example

Input: aa cc xx

Utterance: add aa to the first group. remove ¢ from the second group. Correct Program:(derivation
(formula ((lambda g (call edu.stanford.nlp.sempre.SFun.remove (var g) (number 2) (boolean true)))
((lambda g (call edu.stanford.nlp.sempre.SFun.append (var g) (string aa) (number 1))) (call
edu.stanford.nlp.sempre.S Fun.parseStartState (string "aa cc xx7)))))

Predicted Program: (derivation (formula ((lambda g (call edu.stanford.nlp.sempre.SFun.remove
(var g) (number 2) (boolean false))) ((lambda g (call edu.stanford.nlp.sempre.SFun.prepend (var g)
(string aa) (number 1))) (call edu.stanford.nlp.sempre. SFun.parseStartState (string ’aa cc xx°)))))
Analysis: The worker response is slightly incorrect; the intention was for the worker to say ’double
group”, which is why the oracle parse involves a doubleGroup call. However, our neural network
model does predict a program that is functionally the same as the oracle program, since adding ~aa”
to the group containing aa” is the same as doubling aa”.

The third most common error (occurred 5% of the time) is parsing a program with doubleGroup
and remove in reversed order.

Example

Input: bbjn

Utterance: double group 1. halve group 3

Correct Program:(derivation (formula ((lambda g (call edu.stanford.nlp.sempre.SFun.remove (var
g) (number 3) (boolean true))) ((lambda g (call edu.stanford.nlp.sempre.SFun.doubleGroup (var g)
(number 1))) (call edu.stanford.nlp.sempre.SFun.parseStartState (string ’bb j nn”)))))

Predicted Program: (derivation (formula ((lambda g (call
edu.stanford.nlp.sempre.SFun.doubleGroup (var g) (number 1))) ((lambda g (call
edu.stanford.nlp.sempre.SFun.remove  (var g (number 3) (boolean true))) (call
edu.stanford.nlp.sempre.SFun.parseStartSta e (string ”bb j nn’)))))

Analysis: The correct program would first double the first group, and then remove a ’n’ from the
third group. Our predicted program does that in the opposite order. It could be the case that our



RNN does not currently keep track of order.

6 Conclusions

As expected, the RNN model performed the best. The key reason for this is that the RNN allows us
to take into account factors such as word order in the original utterance. For example, the Siamese
network consistently erred on “swap” functions, as it cannot mathematically distinguish correct
input order since word vectors are added without taking order to account. Meanwhile, the RNN was
able to get almost all of these examples correct.

Because of this blindness to word order in particular, the Siamese and linear embedding models
performed much worse on the 2 utterance dataset compared to the one utterance dataset. The perfor-
mance of the RNN dropped between these datasets too, though not as dramatically. This decrease
can be explained by the fact that the number of candidate parses increases by a substantial amount
in between the 1-utterance commands and the 2 utterance commands because SEMPRE is able to
find more working parses for the 2 utterance commands. As a result, the problem of ranking these
parses becomes more difficult.

Our work suggests that applying deep learning to the general problem of semantic parsing can be
a very promising avenue of research. Our hybrid model combines using hand-specified grammars
to construct our candidate parses and then using deep learning to rank these parses. As seen by the
effectiveness of our RNN compared to the baseline, this approach allows us to avoid the problem
of hand-crafting features to rank the parses, which is that these features could be cumbersome to
exhaustively implement. Vector space embedding models allow greater flexibility. Likewise, it
would also be difficult to implement a deep learning model that generates a program from scratch
given the natural language utterance, as this would require much more data and would almost be a
machine translation task for programming languages. Applying semantic parsing first lets us avoid
this issue by narrowing the search space for potential function translations.

7 Future Work

There are still different network architectures and scoring functions we can explore - for example,
instead of L2 distance, there are other popular distance measures we can try for our scoring function.
Cosine distance, for example, seems to be better for the purpose of comparing word vectors. In terms
of network architecture, we could expand upon the RNN model by implementing more complicated
networks such as bi-directional RNNs, for example.

There are also many ways to extend the scope of our problem. One possible direction is to extend
the number of utterances to parse 3 or more examples. However, this does not seem to be that
technically interesting.

We are able to perform well because the workers generally gave enough information to completely
determine each function call in the program. This is fairly cumbersome, however, and unlikely to
be used in practice. We would like to incorporate context dependencies into parsing programs, that
is, allow the end user to omit arguments and refer to previous commands. In our dataset, there are
some commands that say “undo”, “repeat the last step”, etc. that we are currently unable to parse
correctly. This is partially due to the current limitations of SEMPRE in generating logical forms.
Instead of relying on traditional ML to perform the semantic parsing, we could build an end-to-end

neural network system that would handle everything from program generation to scoring.

Lastly, another direction would be to broaden/choose a different domain. Simple string processing
has a relatively limited domain; a more complex domain could induce more interesting phenomena
that would require new techniques to solve.
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