
Solving Text Imputation Using Recurrent Neural
Networks

Arathi Mani
Department of Computer Science

Stanford University
Stanford, CA 94305

arathim@stanford.edu

Abstract

This paper investigates various solutions to the challenge of processing sentences
with exactly one word missing and determining where in the sentence the word is
missing and also figure out the correct word to insert in the predicted location. We
train multiple flavors of Recurrent Neural Network Language Models (RNNLM)
on a large corpus of English sentences and use the trained model to predict the
likelihood of possible sentences with a new word inserted in the missing data cor-
pus. We show that the bidirectional RNN has the best performance on a dataset
that was limited to sentence that had between 15 and 20 words, reporting a Leven-
shtein distance of 5.315 on the test set and an overall perplexity score of 211.312.

1 Introduction

Text imputation is the process of inserting words into incomplete sentences and is a rather challeng-
ing task due to the dual nature of each solution: one must predict the location of the missing work
and then pick the appropriate vocabulary word to be inserted into that location. Such a challenge
has various applications such as auto-completion of sentences (or even search term fragments) or
the completion of ancient texts where we may be missing parts of the text which have been lost over
time.

This task was derived from a Kaggle challenge which provided a corpus of sentences each with one
word missing; the original dataset is a collection of sentences using one billion words curated by
Chelba et al.. Kaggle divided this dataset up into a training, development, and test set where for
the development and test set, exactly one word was removed from a random location. The only
restriction on the location was that the location was neither the first word nor the last word in the
sentence.

Given this dataset, we would like to see how effective recurrent neural networks are at the combi-
nation of the two tasks. We train three RNNs for this paper and use the language model to predict
the likelihood of predicted sentences, outputting the set of sentences that results in the minimum
cross entropy error. We use two metrics, perplexity and Levenshtein distance, as measures of our
success. Levenshtein distance is also the metric that the original Kaggle challenge uses which gives
us a comparison of our success against some of the other solutions that may not have used deep
learning.

However, one caveat that we had to consider for our work was that the Kaggle dataset turned out to
be too huge of a corpus for us to run the RNN models. In fact, the predicted time to train the RNN
on the entire dataset was two weeks and entire line of research was spawned from this challenge
on scaling RNN implementations to utilize GPUs. To combat this issue, we pruned our dataset
down to 10,000 sentences using an 80-10-10 training-development-test split. The result was that
the Levenshtein distance could not be accurately compared to that of the baseline (5.55211), but we

1

could compare our models to each other to see which one had the highest success at this task and
extrapolate to suggest future edits that might result in even higher accuracies.

2 Related Work

As the task for this paper was derived from a Kaggle challenge from the previous year, several
approaches had been discussed in the forums with regards to the solution. One possible approach
to lower the perplexity of the one billion word dataset was to train using an interpolated KN 5-gram
model using 100 CPUs, resulting in a perplexity score of 243.2.

Another model that was submitted by one of the challenge participants involved using a simple
n-gram model (of up to length 6) combined with the Stanford POS tagger to determine the most
likely location for the missing word. This participant also used a linear regression to predict the edit
distance using features such as the gap between the score of the highest predicted candidate sentence
and the next highest predicted candidate sentence to guess a word of the approximate correct length.

Microsoft recently also had a sentence completion challenge where the company curated a list of
1040 sentences each of which has four words that are not supposed to be a part of the sentence,
yet share a similar occurrence statistic to the actual word. The model must then choose one of five
words to correctly replace the ”imposter” words. The baseline results using n-gram models resulted
in 34 to 39 percent accuracy (the latter number included smoothing) while a human had 91 percent
accuracy. A standard RNN has also been tested on the dataset resulting in a slightly higher 42
percent accuracy.

With regard to other applications of missing data prediction, others have experimented with the idea
of using deep learning to tasks such as traffic data imputation achieving varying degrees of success.
Duan et al. shows that their calculated error was less than 25 percent of the maximum reported error
score for 90 percent of their varying missing rates.

3 Models

We will train three different neural network models for this project to determine which shows the
greatest accuracy in predicting both the correct location of the missing word and its success in
imputing the correct vocabulary word into the predicted location.

Each of the neural networks will essentially perform the same task. First they will train a language
model using the training dataset. The hyperparameters will then be tuned for each model using a
1000 sentence development set before testing on the final curated test set.

For the prediction task, essentially the model will run through around O(2000N) sentences (where N
is the number of words in the sentence and 2000 is the size of our pruned vocabulary) to determine
which sentence results in the lowest cross entropy error. For each sentence in the training data,
each of the possible words in the vocabulary will be inserted into the possibly locations in the
sentences. For example, if we have the sentence ”What do you of her reaction ?” (taken from
the test dataset), and for brevity, a vocabulary solely consisting of the word ”think”, the following
sentences’ probabilities will be evaluated:

”What think do you of her reaction ?”
”What do think you of her reaction ?”
”What do you think of her reaction ?”
”What do you of think her reaction ?”
”What do you of her think reaction ?”
”What do you of her reaction think ?”

We know that the word will not be the first token (space delimited) of the sentence nor the last token
of the sentence, enforced as rule from the original Kaggle challenge. The sentence with the highest
probability will be outputted as the most likely sentence containing the correct word in the correct
location which will then be used to compute the average Levenshtein distance.

2

A random model was also implemented as a baseline measure where one random location was
chosen and a vocabulary word was chosen based on the distribution of its frequency in the training
corpus.

3.1 Vanilla Recurrent Neural Network

The first model that will be used to train the sentences will be a baseline Recurrent Neural Network.
This model has just one hidden layer with size 100 (the word vectors as input to all the models also
have a dimension size of 100). Each word in a sentence has its own 100 dimension word vector and
the hidden and output layers are computed using the following equations respectively:

ht = σ(W · ht−1 + Lx(t))
ŷt = softmax(U · ht)

(1)

The sigmoid function is represented by the sigma for the hidden layer and W and U are the corre-
sponding weight matrices for each of the layers.

3.2 Deep (2-layer) Recurrent Neural Network

The second model is identical to the first model except for the fact that we introduce a second hidden
layer. The motivation behind adding a second layer was to move farther away from the raw data to
possibly capture unusual semantic patterns in the corpus that perhaps a single hidden layer cannot
capture. We modify the equations previously used by adding two additional weight matrices and
using only the second hidden layer’s output to compute the final output. Again, the sigma represents
the sigmoid function:

h
(1)
t = σ(W (1) · h(1)t−1 + Lx(t))

h
(2)
t = σ(W (2) · h(2)t−1 + V · h(1)t)

ŷt = softmax(U · h(2)t)

(2)

3.3 Bidirectional Recurrent Neural Network

The final model that was implemented and trained was the bidirectional recurrent neural network.
The motivation behind using this model was the understanding that the missing word could appear
in any location so the words succeeding the location of the missing word might have a significant
impact on determining the correct word. For example, one could see that solely by looking forward,
a sentence like ”she into the house” could end up having a solution of ”she ran into the house” using
the vanilla RNN, but a more appropriate (and more likely) sentence like ”she moved into the house”
could be predicted by the bidirectional RNN which could understanding that moving is an associated
verb with houses which appears only after the missing word location.

The equations to compute the output follows where the arrow indicate the direction of the previous
hidden layer node:

−→
ht = σ(

−→
W · −−→ht−1 + Lx(t))

←−
ht = σ(

←−
W · ←−−ht−1 + Lx(t))

ŷt = softmax(U · [−→ht ;
←−
ht])

(3)

4 Results

4.1 Evaluation Methodology

For this paper, the original dataset provided by Kaggle had to be vastly pruned as the computation
time for training RNNs on around 5GB of data would take approximately two weeks. Instead, we
used a corpus of around 10,000 sentences split such that the training set had 8,000 sentences and
the development and test set each had 1,000 sentences. We also added an additional constraint to
limit the number of word in each of the sentences so sentences with five to ten words were separated
from sentences with ten to fifteen words which were separated from sentences with fifteen to twenty
words. The motivation behind this was based off of a forum post on how the aggressiveness of the
vocabulary prediction had to vary based on the length of the sentence; sentences with longer words

3

had to be more conservative in their guessing since the approximate word length was the same as
shorter sentences but their scope was much more fine tuned that a word missing from a very short
sentence. Each of the three models listed below were trained on the three different training sets
separately and tested separately on the test sets.

The Kaggle competition uses Levenshtein distance to compute the accuracy of the prediction of the
test sentences. This distance is computed by counting the minimum number of single character
edits, which could be substitutions, deletions, or insertions, that is required to turn one string into
another. For example, the words ”rat” and ”rod” have a Levenshtein distance of 2. This metric
does an accurate job of reporting the difference between the two strings since it both penalizes the
incorrect placement of the word and the difference in the choice of word without being skewed due
to the offset. For example, if the model predicts the sentence ”the car very drove fast” for the actual
sentence ”the car drove very fast”, the entire second half of the sentence starting from the words
succeeding ”car” are not all penalized; only the deletion and insertion of the word ”drove” will be
reflected thus giving credit for choosing the correct missing word.

We will also use perplexity as a metric to determine how well each language model is working.
Perplexity will act as an indicator to how well each language model is able to learn the training
data and generate sentences in the prediction step. We use the cross entropy error to from forward
propagation to compute this metric using the following equation:

PP (t)(ŷ(t), y(t)) = exp(J (t)(θ)) (4)

4.2 Evaluation Results

Table 1: Results of sentences size 3 - 10

MODEL AVERAGE LEVENSHTEIN PERPLEXITY
Baseline 6.674 N/A
Random 5.554 N/A
Vanilla RNN 4.967 234.759
Deep RNN 4.892 230.591
Bidirectional RNN 4.513 227.247

Table 2: Results of sentences size 10 - 15

MODEL AVERAGE LEVENSHTEIN PERPLEXITY
Baseline 6.883 N/A
Random 5.661 N/A
Vanilla RNN 5.38 220.940
Deep RNN 5.442 219.19
Bidirectional RNN 5.262 213.444

Table 3: Results of sentences size 15 - 20

MODEL AVERAGE LEVENSHTEIN PERPLEXITY
Baseline 6.935 N/A
Random 5.547 N/A
Vanilla RNN 5.428 223.211
Deep RNN 5.399 219.488
Bidirectional RNN 5.315 211.312

4.3 Results Discussion

The vocabulary was created by a simple counting algorithm over the training data and determining
the top 2000 most frequent words. We then modified the gold version of the development and test
data so that any word that was removed, but not in the vocabulary, was replaced using the unique
token ”UUUNKKK.” We did this so that we were not penalized for sentences for which the word
was impossible to impute. The result of this process was that about 15 to 20 percent of the sentences
had the word ”UUUNKKK” as their correct missing word.

4

For the vanilla and bidirectional RNN, we used a learning rate of 0.01 while for the deep RNN, a
learning rate of 0.1 was used. For the dataset with sentence size 5-10, we used 10 epochs, while for
the other two datasets, only 5 epochs were used. We noticed that learning the structure of smaller
sentences that were peppered with many ”UUUNKKK” replacements was more difficult to train than
a dataset with a more words (thus increasing the probability that the removed word was a common
word and therefore found in our limited vocabulary) and so fewer ”UUUNKKK” cases had to be
trained.

The baseline was computed using the raw missing data test corpus and determining the Levenshtein
distance if there were no words predicted. The fact that the Levenshtein distance is around 7 for each
of the datasets tells us that on average, the missing word has around 7 characters and that increasing
the number of words in the sentence generally indicates that the word will have a higher number of
characters.

We do not compute a perplexity score for the baseline or random models since the perplexity score
is based on the idea that we have trained a model to give us a cost score that tells us how likely a
sentence is to be generated by the trained model.

From the tables above, we can see a general trend that the Vanilla RNN provided significant gain
over the Baseline and Random models. Also, the general trend for the Deep RNN was that it
usually showed a slight improvement over the plain RNN, but usually not by much and the gain was
significant for the longer sentences. Finally, the Bidirectional RNN yielded the best performance
resulting in a lower perplexity score and a lower Levenshtein distance score for all three datasets.

Perhaps unsurprisingly, the sentences that had the best performance were ones where the missing
word was actually ”UUUNKKK”. Although the word was not present in the training data, all three
models for the two smaller sentence length datasets (the 15 to 20 word sentences frequently did
not need to resort to using ”UUUNKKK”) were able to translate unfamiliar vocabulary from the
training data into ”UUUNKKK” and usually successfully complete the sentence. An example of a
correct sentence that successfully was completed from the 3 - 10 test set was ”players and staff are
running out of UUUNKKK .” One clear pattern from analyzing the RNN and the deep RNN versus
the bidirectional RNN was the former two’s success in predicting the last word. Whenever the last
word was the one missing from the gold set, we found that the model was good at predicting the
concluding word. Other interesting examples that the model did a good job of predicting was any
punctuation that appeared in the middle of the sentence. One example is the following: ”no , ! ! !
... why ? .” The model did make a mistake in that the placement of the ”word” ”...” was incorrect
(the gold version was ”no ! ! ! ... why ?”) but it was impressive to see the ellipses correctly
identified among the 2000 words in the vocabulary only 18 of which were special characters and of
which one was even the word ”.....”.

Common errors that were seen in the first two models were due to the limitation of numbers in the
vocabulary. Many sentences had numbers which, while generalized to only the pattern using ”DG”
as a replacement for each digit, did not appear in the vocabulary so the gold version marked it as
UUUNKKK and the model attempted to place an actual number there instead. This error could have
had a significant impact on the Levenshtein distance as ”DG” and ”UUUNKKK” are vastly different
in characters thus making it appear as though the model performed poorly with missing numbers.

Another common error appearing in all three models and especially seen among the larger sentences
was the incorrect insertions of the comma ”word.” One possible explanation for this error could be
the models understood that the larger 15 to 20 word sentences were frequently comprised of frag-
ments that were delimited by commas and therefore a sentence with an additional comma inserted
seemed like a plausible solution.

One interesting pattern that came out of the results was that the benefit of using a deep RNN versus a
bidirectional RNN seemed to decrease as the length of the sentence increased. This seems to indicate
that longer sentences probably have more complex structures that are being captured well by adding
an additional hidden layer and that this additional information is more useful that understand words
that succeed a particular point in the sentence. It would be an interesting experiment to see how well
a deep bidirectional RNN would do since the combination of the two features would possibly lead
to a strong gain in improvement.

5

The most successful part of the entire set of experiments was successfully predicting the location
of the missing word. This can be seen from the table in that the perplexity scores for all three
datasets were the scores that exhibited the greatest difference between the models compared to the
Levenshtein distance which improved more subtly. Many sentences were obviously completely off-
mark in predicting the correct word, such as the following sentence ”rubbish burned in the closed
, some cars had their windows broken , and police blocked access to roads .” where ”closed” was
actually supposed to be ”street.” However, it was a success at least in the aspect that the location
of the missing word was correctly predicted. This observation might point us towards the fact that
deep learning models may be effective at predicting where data is missing, but a more comprehensive
and/or complex model might be needed for the prediction itself. The limited size of our vocabulary
larger had a factor in these errors, but the fact that the example sentence came from the 15 to 20
word sentence dataset (and that there are several more like it) seems to indicate that the vocabulary
is not only the problem.

5 Conclusions

In this paper, we have shown that the bidirectional RNN yields the best Levenshetein and perplexity
scores out of the three models tested for our missing data problem where we try to impute a single
word into a sentence that is missing exactly one word from an unknown location. While an accu-
rate comparison cannot be made against other work due to our limited data, we were successful at
lowering the perplxity score of the dataset compared to the 243.2 reported by Chelba et al. which
used a simple 5-gram model and we were able to beat the baseline Levenshtein distance of 5.55211
as reported by Kaggle. We observed that the deep learning models were very good at predicting the
location of the missing word while the small size of the vocabulary and perhaps the training data
size itself, added a limitation to the success of predicting the missing word itself. The partial success
of these experiments points to the conclusion that a deep learning model may be part of the answer
to a model that solves text imputation in general and adding a better word (or to generalize, data)
prediction model could possibly yield a very accurate and powerful text imputation solver.

5.1 Future Work

One obvious extension of this work would be to train other models, such as varieties of recursive
neural networks or LSTMs (long short-term memory), to determine whether they perform better or
worse than RNNs. We could also examine the effect of adding smoothing, such as 5-gram Kne-
serNey smoothing, on how well the model is able to predict the location of the missing word in
particular.

One of the most prohibitive aspects of this works was simply the sheer size of the original corpus of
sentences which contained a vocabulary of one billion words. One could imagine that being able to
utilize the entire corpus could possibly lead to significant improvements in the prediction task, but
additional aggressive pruning techniques would be required. One possible solution could be to do a
two pass prediction task where we first create one model to first predict the location of the missing
word and use a second model to predict which word from the vocabulary would be most likely to
fit in that location. Using a two pass method means that we could combine various models, such as
using a recursive neural network for the missing location prediction and a bidirectional RNN for the
word prediction, to see which pair works best.

Finally, it would be interesting to see how well such a model could be applied to corpuses of data
that are not limited to English sentences. Text imputation can be generalized to be a ”missing data”
task and it would be interesting to see how well deep learning models would perform on other types
of data like social networks graphs or any survey-based data.

References

[1] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony Robin-
son, One billion word benchmark for measuring progress in statistical language modeling, Tech. Rep, Google,
2013.

[2] Will Williams, Niranjani Prasad, David Mrva, Tom Ash, Tony Robinson, Scaling Recurrent Neural Network
Language Models, http://arxiv.org/abs/1502.00512

6

[3] O. İrsoy and C. Cardie, Opinion mining with deep recurrent neural networks, in Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing, 2014, pp. 720728.

[4] Duan, Yanjie, L. V. Yisheng, Wenwen Kang, and Yifei Zhao. ”A deep learning based approach for traffic
data imputation.” In Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on,
pp. 912-917. IEEE, 2014.

[5] Schuster, Mike, and Kuldip K. Paliwal. ”Bidirectional recurrent neural networks.” Signal Processing, IEEE
Transactions on 45, no. 11 (1997): 2673-2681.

[6] Mikolov, Tom, Stefan Kombrink, Luk Burget, Jan Honza ernock, and Sanjeev Khudanpur. ”Extensions of
recurrent neural network language model.” In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, pp. 5528-5531. IEEE, 2011.

[7] Mikolov, Tom, Stefan Kombrink, Luk Burget, Jan Honza ernock, and Sanjeev Khudanpur. ”Extensions of
recurrent neural network language model.” In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, pp. 5528-5531. IEEE, 2011.

[8] Socher, Richard, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. ”Recursive deep models for semantic compositionality over a sentiment treebank.” In
Proceedings of the conference on empirical methods in natural language processing (EMNLP), vol. 1631, p.
1642. 2013.

[9] Zweig, Geoffrey, and Christopher JC Burges. The Microsoft Research sentence completion challenge.
Technical Report MSR-TR-2011-129, Microsoft, 2011.

[10] Zweig, Geoffrey, John C. Platt, Christopher Meek, Christopher JC Burges, Ainur Yessenalina, and Qiang
Liu. ”Computational approaches to sentence completion.” In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers-Volume 1, pp. 601-610. Association for Computa-
tional Linguistics, 2012.

7

	Introduction
	Related Work
	Models
	Vanilla Recurrent Neural Network
	Deep (2-layer) Recurrent Neural Network
	Bidirectional Recurrent Neural Network

	Results
	Evaluation Methodology
	Evaluation Results
	Results Discussion

	Conclusions
	Future Work

