There and Back Again: Autoencoders for Textual
Reconstruction

Barak Oshri Nishith Khandwala
Stanford University Stanford University
boshri@stanford.edu nishith@stanford.edu

Abstract

In this paper, we experiment with the use of autoencoders to learn fixed-vector
summaries of sentences in an unsupervised learning task. Sentences as word vec-
tors are fed into an encoder, either a recurrent neural network or convolutional
neural network, transformed into a summary vector of fixed size, and then un-
folded back into an ordered sentence using a recurrent neural network. This model
is analogous to encoder-decoders used in machine translation models, and in fact
we posit that the modular space that captures semantic commonalities between
two languages in an encoder-decoder can be applied to a single language example
by translating a language back to itself. Here, the intermediate vector space is
both an encapsulation of a sentence and a seed for reconstructing it, which makes
it useful for other natural language processing tasks. The aim of this project is to
ultimately create effective semantic representations of variable sized text.

We train our model on 10,000 English Wikipedia sentences on an objective func-
tion that minimizes the cross-entropy between the input sentence and recon-
structed sentence and that minimizes the euclidean distance between the encoding
of the reconstruct text and that of the input text, so that insignificant changes or
synonyms to output words are not viewed as bad reconstructions. We show that
qualitatively there is some success in this model, though it overfits on the trained
examples and needs to train on a larger dataset. We show that the autoencoder
is able to discern useful English syntax rules that determine the useful features
needed for reconstruction.

1 Introduction

Embedding sentences and paragraphs in word vector space is a fruitful and important area of re-
search for the long-term semantic understanding of language. These efforts often operate under the
assumption that the distributed representation of words encodes the characteristic attributes needed
to represent the semantic value of sentences. [1]] train paragraph vectors using Skip-gram and Con-
tinuous Bag of Words (CBOW) models, modifying the original method for word vectors by includ-
ing paragraph tokens that contribute to the prediction task of the next word given context windows
sampled from the same paragraph. The vector representations are then used to predict the following
word given the paragraph summary and a context.

Their model, called Paragraph Vector, has several shortcomings. The summary vector must be
trained using learning algorithms for each new document given. This already excludes many of the
cognitive attributes expected in a summarization system: knowledge of effective chunking rules,
awareness of the salient features of the language, and ability to distinguish syntax from meaning.
Paragraph Vector learns the domain-specific knowledge of the text and the relation between the
aggregate and the context, thereby eschewing the general for the particular rules of summariza-
tion.

Skip-gram and CBOW train by relating words to their contexts. This model is effective for word
vectors but not paragraph vectors because the function of words arise due to their contexts, whereas
the semantics of sentences arise within their own input. That is, words are best understood given their
context, whereas sentences are best understood by the interactions occurring inside the sentence (to
the extent that the semantic quality of the sentence is produced context-free of the other sentences,
which is mostly true).

1.1 Textual Reconstruction

One way of generating representations that retain the semantic meaning is having that the summa-
rization vector can be reconstructed back into its original text. In this case, we create representations
with the potential energy for reconstruction of the semantic content of the original text. In our
project, we will attempt to create sentence (or any variable sized) representations using an encoder-
decoder (an autoencoder). This is an unsupervised learning model (or a supervised one that uses its
own input as the label), which we will use over text in random Wikipedia articles.

This approach is analogous to Skip-gram and CBOW in a unique way: the encoder can be likened
to a sentence level CBOW, with all the words in the sentence acting as context to one underlying
idea for the whole sentence. Likewise, the decoder can be likened to a skip-gram model where one
vector generator a whole sentence. The advantage of this model is that it simultaneously incorporates
a sense of both of these approaches in training.

Encoder-decoders of this sort are often used in machine translation tasks. We use this approach
because, interestingly, textual reconstruction can be viewed as a similar problem to machine trans-
lation. The goal of machine translation is to find a semantic isomorphism between two languages.
If the semantic qualities of one language can be condensed to an intermediate representation that is
also good for the syntactic unfolding of the next, then this intermediate representation is the modular
link between the two languages.

When both languages are substituted to be the same, and the translation model is trained in the same
way, the intermediate representation becomes both a seed and encapsulation of the language. This
space is now fit for potential applications of answering questions, generating a next sentence, and
combining sentences through learned vector transformations since it both expresses language and
produces it. These are some of the possible applications of the learned model, though they will not
be treated in this paper.

Word vectors of a sentence will be fed through an encoder and decoder, the latter of which is mod-
elled via Recurrent Neural Networks (RNNs) for sentence generation and the former of which is
flexible to different approaches that create and update hidden states. The encoder is trained to pro-
duce a final hidden state known as a summary vector and the decoder network is trained to generate
an output sequence by predicting the next symbol given its hidden state and the summary vector; the
probability of the output can thus be computed as the product of conditional probabilities of words
given all the previous words. The loss function will compute some distance metric between the input
and output sentences, which capture how different the output is from the input.

Translating English back to itself offers a surprising advantage: a loss function can train to not only
expect that the input and output text is similar, but also feed the output into the encoder and expect
the hidden representation of the reconstructed text to be similar to that of the input text with the
intention of the reconstructed text having a similar encapsulation to the input text. This fulfills the
aim of this project to create effective semantic representations of variable sized text.

We will be training our model on Wikipedia articles using GloVe Wikipedia-trained word vectors.
To evaluate our model over a large corpus, we will use the BLEU metric, which has been previ-
ously used to score machine translation models. We will also be subjectively assessing our output
text.

2 Data Collection and Processing

For the purposes of this project, we decided to train our models on the Wikipedia dataset. For every
article, the WikiMedia foundation keeps a record of the text i.e. the body of the article and the
meta-data associated with it. Since we were only interested in training our model on the constructs

of English language, we decided to ignore the meta-data and only scrape the raw contents out of
wikipedia articles. We obtained a XML dump of 10,000 articles and parsed into its textual core
using an open-source utility called WikiExtractor. This module takes in a dump file and generates
multiple text files, each file containing several articles.

In order to make this parsed data actually usable for our models, we need to extract sen-
tences from these articles. Identifying sentences in paragraphs is not as straightforward as one
would imagine. A sentence need not always end with a period. It could also terminate with a
question mark or an exclamation point depending on the context of the situation. Also, it would be
crucial not to confuse periods with decimal notation. Looking at the complexity of this task, we
sought to leverage previous work done in this field, namely the Natural Language Toolkit (NLTK).
This toolkit provides an interface to segment chunks of text into sentences and then into words. The
data boiled down to a list of lists where each inner list represented a sentence. The models could
now be trained either at the character level or GloVe representations of individual words. In the case
we wanted our model to train on GloVe, sentences with words not in GloVe were discarded.

3 Autoencoder Models

3.1 Basic Model

In this paper, we propose a neural network architecture that learns to
encode a variable-length input sequence x into a fixed-length vector
representation ¢ and to decode ¢ into a variable length sequence y =~ Decoder

that is trained to resemble the initial input. We will base our project A
on a model for machine translation developed in [2]. r‘—

The encoder is a Recurrent Neural Network (RNN) that reads each
symbol of an input sequence x; independently as a word vector and
uses it to update the hidden state h; of the condensed representation

over a nonlinearity f,

he = f(he—1,24) (1

Once all symbols of the input are passed, the final hidden state is
denoted as the summary c of the input. The decoder is an RNN

X1 X Xr

that is used used to generate an output sequence y given a summary Encoder
c. The decoder updates a hidden state h; using knowledge of the
previously outputted word and the summary sentence ¢, which it
uses as a signpost for the summary of the sentence. The hidden
state of the decoder is computed using a nonlinearity g by,

Figure 1: Basic RNN
encoder-decoder model. Cho
et al. 2014

hy = g(htflyytfhc) ()

where the conditional probability of an output symbol y; is generated using the hidden state at that
time interval with a nonlinearity ¢ by

P(yt|yt717yt727“'7y110) :q(htaytfhc) (3)

The decoder continues to unfold (to a maximum) until it outputs the end-of-sentence token. As in
Cho et al. 2014, we recommend the use of Gated Rectifier Units (GRUs) for f and g.

We now propose improvements for a more expressive model.
3.2 Bidirectional RNN Encoder
The summary vector ¢ does not only have to be computed as the hidden state at the end of a sequence.

A Bidirectional RNN can be used to encode a summary of the sentence at each word of the sequence
by reading through part the sequence until that point forward and the rest of it backward. This

produces a summary vector for each word in the sentence,

EZ = f(Wl‘t + 7ﬁ>t_1 + ?)
e = fWai+ Vi +) “)
Ct = g(U[ﬁf7 %t] + C)

The final summary vector c can either be computed by averaging all ¢;, or by training a final neuron
for the entire length k of the sequence,

c=gWley;...;ex] + ¢) (5)

However, we will not be training our model with a bidirectional RNN encoder because we expect
it to outperform the single layer RNN by only a little and to perform worse than the convolutional
neural network discussed below.

3.3 Convolutional Neural Network Encoders

Convolutional neural networks (CNNs) adapt recursive neural network approaches to analyzing lan-
guage using parsing trees by computing all convolutions of the original data, automatically training
filters that learn the best language features of the data. CNNs with pooling have been extremely suc-
cessful as encoders into modular representations in machine translation as in [3]. The CNN model
that we implement is described in [4], which transforms a sentence matrix into a continuous vector
representation by applying a sequence of convolutions followed by a fully connected transformation
to the output space.

3.4 Stacked Autoencoders

Stacked autoencoders are autoencoders where the output of one autoencoder feeds into the input of
another autoencoder. This models enjoys the many benefits of deep networks with greater expressive
power. Suppose that E(x) = ¢ and D(¢) = y are the abstract functions denoting encoding and
decoding. A stacked autoencoder with & levels reconstructs text by

y = (Do E)(x) 6)

The autoencoders are trained one level at a time and then finetuned with backpropagation. Stacked
autoencoders did not lead to measurable improvements in our model and are not further dis-
cussed.

3.5 Denoising Autoencoders

One useful form of data augmentation is to add stochastic noise to the data and have the autoencoder
predict the denoised data. The denoising autoencoder then learns to distinguish ucorrupted values
from the corrupted. Crucially, the loss function uses the uncorrupted x as the intended reconstructed
text.

We test a few types of corruption. The first corruption is to with probability p remove a word from
the input sentence to minimize the contribution of a single word on the semantics of the sentence.
The second is to with probability p add gausian noise to all the values of a vector. This trains the
encoder to generalize a word to synonyms and other words that fit the context of the sentence.

4 Training
4.1 Objective Functions
Autoencoders are trained to minimize some metric between the input and output. This is a challenge

in this task because the length of the input and output sequences are not constrained to be the same.
Additionally, we wish the summary vector to encode the salient semantic features of the original

input, so that sentences with similar meaning have similar hidden representations. We propose two
terms for the objective function.

4.1.1 Reconstruction Loss

For the reconstruction loss, we compare at each time step the generated output from the decoder and
the correct output using cross-entropy loss. This loss captures the word-wise difference between the
reconstructed text and the original input. We thus unfold the summary vector for the length of the
original input to produce a reconstructed sequence of the same length.

T e = = 3 2 log(p(y"” = 1[x)))

where C is the size of the dictionary, L is the length of the input string, () is a one-hot vector of
the dictionary index of the word, (p(y®|x) = softmax(h(®)), where A(*) is the hidden state at time
t of the decoder.

4.1.2 Encoder Loss

The second term of the objective function allows leniency on the precision of the reconstructed text
by penalizing reconstructed text that has a very different encoded hidden state. If the encoding of
y has a similar representation to the encoding of the input x, then it must be the case that the input
and output had a similar meaning for the encoder. This approach benefits from the fact that both
summarizations are items of the same size and can be compared. In this term the model is measured
at the point of summarization as opposed to at the point of the text.

Let ¢’ denote the encoding of the deconstructed text. We can evaluate the difference between the
two using the L2 norm. Hence the objective function of this metric is,

I (X)ene = || E(x) = E(D(E(x)))]|
= [[E(x) = E(D(c))]| ®
= [[Ex) - EQy)
=lle=<|
We let the final objective function be a convex combination of the two terms,
J(x) = (1= N)J(X)rec + AJ(X)enc
9

4.1.3 BLEU

Machine translation papers often adopt the Bilingual Evaluation Understudy (BLEU) metric to eval-
uate the quality of translated sentences. BLEU measures a co-occurence of n-grams between a good
quality translation and a candidate translation. In our case, the original text is the good human-
quality translation and the output the candidate translation. Clearly, BLEU is most effective when
it evaluates translation at a corpus level (because it sees enough of the n-grams to make a good es-
timate of correspondence). For this reason, we will use BLEU to evaluate the success of our model
after significant training and once we are confident the model is somewhat good in translation, after
which we will translate a bulk of text to evaluate with BLEU.

5 Results

In the results section of the paper, we will present our primary results, compare the effects of the
different features and tunings presented in the earlier sections, and explain those results. Because

280 . Cost \{5. IteraFlons: Tr‘ammg ‘

260
2401
q
S 220
200

180

160,

0 5 10 5 20 3 30 35 a0
Iterations (in 100s)

Figure 2: RNN encoder cost graph. Best cost is 174

this is an unsupervised task, other than using the BLEU score, we will compare the costs of the
different models and mostly evaluate the qualitative aspects observed.

We trained our data on 10,000 Wikipedia sentences using 50 dimensional GloVe word vectors. The
model was written and trained in Theano. The primary computational burden was unfortunately
the Theano scan function, which accounted for 89% of the computing time of the compiled Theano
function. Training on a GPU on all models increased the training rate by 100 times.

5.1 Initial Results

Our first trained model was the simple RNN encoder. When we first started training, we were
surprised to see the loss function decreasing exponentially but the reconstructed text having no
relation to the input text at all; the immediate suspicion was that we were training against the wrong
objective. Additionally, with more training, the outputs began to converge to exactly the same
sentence.

In fact, we realized we were making a grave but subtle mistake: at initialization, when the generated
output bears no relation to the input text, the encoder loss (which motivates the encoding of the
reconstructed text to be the same as that of the input) encouraged uncorrelated, random outputs to
map to the same hidden state as that of the input. The encoding converged at a small set of hidden
state vectors because unrelated sentences were all matched to the same hidden representation. The
model was indeed learning, but the encoder loss, which has a much higher absolute value than the
cross entropy loss, was trumping the reconstruction loss, which is more arguably the more important
term.

It was thus very clear that we could not initially train the model against the encoder loss, because the
autoencoder must first learn to reconstruct text and only then finetune its understanding by training
on the encoder loss. We thus trained our first models on a very high value of A (0.85) to prioritize
training on the reconstruction loss.

Running the autoencoder showed that our model performed well on the training dataset, but per-
formed very poorly on new sentences. We trained on 10 epochs with Stochastic Gradient Descent
with batched updates on a learning rate of 0.01.

Here is an example reconstructed sentence from the fraining set:

Original: Although modifying glass tubing is no longer an essential laboratory technique, many are
still familiar with the basic methods.

Reconstructed: Modify is eldest, essential glass is liverwort with laboratory technique and will find
basic accompanies kanie alternative methods.

Here is an example reconstruction of an unseen sentence:

Original: Direct sunlight at noon can make it transpire to death, because it gets too warm, as can
strong winds, which also dry out the plant.

Reconstructed: Narrow magnificant called which she criseyde posts st. lacma because hold laura
out noon which new either and and dry tomorrow as some meet warmth is earth.

The reconstruction of the unseen sentence evidently picks up some word associations to the original
input, but it fails to reproduce some of the salient syntactic features of the sentence. Meanwhile the
training set example reconstructs the input text with higher fidelity to the input sentence.

5.2 CNN Encoder

The CNN encoder performed significantly better than the RNN encoder with a final loss of 94. The
model needed to train for more epochs than the RNN encoder. Our final CNN included 10 filters;
more did not seem to help with reducing the loss.

One of the most satisfying observations about the CNN
encoder is that the model reconstructs well-formed En-
glish sentences significantly better than it does garbled

e o o o o o o sentences, which is evidence that the CNN features en-
o o o o o o o code useful syntactic structures nonexistent in random in-
s o] 18] & I I’ I8 put for unfolding the hidden representation.

YERVYERVYERYVEYE YR Original: The show was cancelled after a single seven

episode series.

Reconstructed: The that cancelled show issue race time
one readmitted.

Ll

Original: single a episode seven cancelled series. after
The show was

Reconstructed: Also black elden soon time can icc hib-
bard n’t once 500 comparative ginny.

* e o o o Interestingly, order mattered a lot in the CNN en-
coder.

Figure 3: CNN encoder to RNN de- >-3 Denoising Autoencoder

der. Kalchb Bl . 201
coder. Kalchbrenner, Blunson. 2013 The denoising autoencoder led to subtle differences in the

rate that the autoencoder outputted frequent words. The

denoising autoencoder with probability p (hyperparame-

ter) excluded a word from the input and was trained to

reconstruct the well-formed original sentence. Clearly,

common words in sentences ("the’, ’and’, ’I’, ’to’) are the

individual words that are missing most in absolute terms.
The autoencoder with a much greater confidence outputted these frequent words (because in training
it learnt to see them as emergent in its inputs).

To see whether this was true, we took the 20 most frequent words in GloVe and measured the
difference in frequency with which they appeared in reconstructed text between the encoder trained
with noisy examples and that trained without. These words appeared 8% more frequently with
p = 0.10 and 19% more frequently with p = 0.25. Noisy samples are thus a successful way
of encouraging the model to make fewer wild guesses by guessing at the frequent words more
often.

5.4 Summary Vector Sizes

Perhaps the most paramount hyperparameter

in the experiment is the dimensionality of the

hidden vector representation. The final cost 150
was lowest at a hidden dimension size of
250, plateauing with greater values. This is
a promising result that, if a sentence is taken 10
to have an average length of 15 words (as a

lower bound), only a third of the sentence size g0
is needed to encapsulate the original sentence.
We were wondering why larger hidden dimen-

Cost vs Hidden vector dimensions on a CNN encoder

140

110

sion sizes didn’t improve the training against 100
the objective; a reasonable explanation is that
with higher dimensionality the unfolding of the Moo mo w0 mo o o w0 &0

Hidden vector dimensions

hidden state is more “’sensitive” to perturbations

of the hidden values, which makes the model

less robust and prone to small errors in the encoding that capsize the rest of the unfolding. Large
vector sizes also sharply increase the encoding cost, so it is more challenging to train against the
objective of encapsulating similar text with similar hidden representations.

5.5 BLEU Scores
BLEU scores are the most standard way to evaluate the success of the reconstruction. For each of the

models trained, we translated a full-length wikipedia article and compared the reconstructed with
the original article.

Table 1: Encoder Model Vs. BLEU Score

Encoder BLEU Score
RNN Encoder 0.0648
RNN Encoder w/ Denoising | 0.0937
CNN Encoder 0.1024
CNN Encoder w/ Denoising | 0.1152

6 Further Work

The primary limitation in our experimentation was computational needs. Wikipedia’s dataset is
essentially unlimited, and the nature of this unsupervised task means that there is no lack of data;
yet we only trained on 10,000 sentences from Wikipedia. Even our best model was overfitting the
trained data, and the best measure of the success of this approach is to pit the model against an
extremely large dataset and achieve the lowest cost function.

Further tests need to be done to determine whether character-level input leads to better results. We
initially started with character level but we had to train for many epochs before the model could
even output correctly spelt words. However, the goal of this project to create strong fixed-size
encapsulations is better met by using word vectors, since synonymous words or vectors close to the
actual word vector should lead to similar encodings.

Since our initial results are promising, we suggest that further work is done to evaluate whether
these hidden representations are in fact useful for natural language processing tasks. For example,
they could be tested on sentiment analysis, sentence prediction or question-answering tasks. It is
especially easy to process and manipulate these vectors because they have a fixed-size and can all
be used to generate semantically significant text after an operation.

The codebase of this project is publicly available at
github.com/BarakOshri/TextualReconstructor

References

[1] Q. V. Le and T. Mikolov, “Distributed representations of sentences and documents,” arXiv
preprint arXiv:1405.4053, 2014.

[2] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio, “Learn-
ing phrase representations using rnn encoder-decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014.

[3] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation models.,” in EMNLP,
pp- 1700-1709, 2013.

[4] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural network for mod-
elling sentences,” arXiv preprint arXiv:1404.2188, 2014.

github.com/BarakOshri/TextualReconstructor

	Introduction
	Textual Reconstruction

	Data Collection and Processing
	Autoencoder Models
	Basic Model
	Bidirectional RNN Encoder
	Convolutional Neural Network Encoders
	Stacked Autoencoders
	Denoising Autoencoders

	Training
	Objective Functions
	Reconstruction Loss
	Encoder Loss
	BLEU

	Results
	Initial Results
	CNN Encoder
	Denoising Autoencoder
	Summary Vector Sizes
	BLEU Scores

	Further Work

