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Abstract

In this project, we seek to use computational models to infer mathematical struc-
ture from purely symbolic inputs. Though there are existing systems for pars-
ing mathematical expressions, there have been only limited approaches to apply
learning-based algorithms to this inherently subtle task. This project therefore
proposes an integrated methodology that applies various configurations of neural
networks to analyze sequences of mathematical language. We define both a dis-
criminative task – in which we pursue the verification of a given equation – and
a generative task – where we predict the evaluation of an input mathematical ex-
pression. We test our models on a novel dataset, and gain insight into the workings
of our models by learning underlying representations of our data.

1 Introduction

The language of arithmetic is an inherently rich yet remarkably unexplored subject. It remains a
topic unlike most others in the wide domain of language processing since it involves the analysis
of a very well-defined and deterministic discourse. The task of evaluating mathematical sequences,
in particular, is especially open-ended. Though there has been much previous work in this domain,
most approaches have utilized prior knowledge of rules or algorithms in order to evaluate input
expressions. Very few methods, however, have attempted to independently learn these specific rules
with limited amounts of supervision.

The task of unsupervised evaluation is both an intricate and subtle challenge – it often requires
models to assimilate interactions between specific characters that might be separated by reasonably
long intervening sequences. For more complicated operations, such as multiplication or division,
successful prediction is often predicated upon assimilating interactions between pairs of digits over
varying ranges, which makes it difficult for simple linearly scanning networks to approximate these
operations. Attaining success on such instances will thus necessitate the development of more pow-
erful models.

The unsupervised extraction of rules is also an integral part of human development, where we our-
selves have the innate ability to abstract mathematical rules and restrictions based purely on exam-
ple. Developing algorithms that can similarly extract mathematical “understanding” purely from
input data is thus key towards the completion of a more refined and sensitive artificial intelligence
framework.

In this project, we thus focus on the inference of mathematical rules from purely symbolic data. We
pursue both discriminative and generative formulations of this challenge, and evaluate a range of
computational models on a newly constructed dataset.
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1.1 Previous Work

We now discuss several previous attempts to address challenges related to the task of learning-based
evaluation.

Graves et al. make the assertion that Recurrent Neural Networks (RNNs) are Turing-Complete,
and formulate a Neural Turing Machine that is capable of performing operations such as priority
sorting [1]. They additionally state that RNNs can be used to model arbitrary operations but only
if properly configured. Their work is thus extremely relevant to our task at hand, due to the in-
herent implication that these models are capable of learning and therefore representing a variety of
mathematical functions.

In their recent paper Learning to Execute, Zaremba and Sutskever utilize Long Short-Term Memory
(LSTM) networks [2] in conjunction with curriculum learning to obtain exceptional performance on
the addition of two 9-digit numbers. This remarkable outcome, however, was obtained by execut-
ing LSTMs on Python-like programs as opposed to pure mathematical sequences, and inputs were
constrained to computer programs that focused solely on addition. Nevertheless, the success of this
approach indicates that there is much potential for experimentation with other forms of sequence
inputs and operations.

In their highly influential work on deep learning [3], Hochreiter et al. demonstrated that LSTMs
are remarkably suited for performing such tasks as addition, excelling under the inherent ability to
selectively ‘remember’ certain states of the input in previous timesteps. They thus propound the
structure of a new network and show that it can obtain remarkable outputs under various testing
conditions. However, they note that the model does not excel in multiplication-related tasks.

Thus, all of these approaches have demonstrated the great potential for recurrent networks to act as
learning-based computational models which can evaluate arbitrary input expressions. In our project,
we thus seek to expand on this potential and investigate the capabilities of neural networks for
learning mathematical structure from input sequences.

2 Technical Approach

In this section, we now more formally describe our challenge of mathematical evaluation. We then
discuss the various models and techniques we apply to this task, and in section 3 we provide our
corresponding results.

2.1 Verification

We divide mathematical evaluation into two distinct, though related, challenges. We first pursue
the discriminative task of verification: Given an input sequence, representing a single equality or
expression, we would like to determine if this expression is a mathematically valid statement. Thus,
we perform binary classification on input sequences to determine if output matches the evaluation
of the input. Attaining high accuracy on this task would imply knowledge of what constitutes valid
operations and how those operations implicitly function.

2.2 Evaluation

The second task that we address is evaluation, where we are given a mathematical expression, and
our goal is to obtain an evaluation of this expression. We can in fact pose this challenge as machine
translation, where our aim is to translate source language s into target language t. In our case, the
source language is represented by the left-hand side of a mathematical statement, and the target is
simply the evaluation of this expression (or alternately an mathematically equivalent formulation).
This represents a far more difficult challenge than verification – while the former requires only the
implicit knowledge of mathematical understanding, evaluation necessitates that the models be able
to apply these rules (or reasonably approximate them) in order to achieve success.
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Discriminative Generative
(‘176 + 300 = 878’, 0)

(‘321 + 71 * 124 - 1 = 1609’, 0)
(‘40 - 349 = -309’, 1)

(‘372 * 372 = 138384’, 1)

(‘451 + 826 - 201’, ‘1076’)
(‘969 * 561’, ‘543609’)

(‘279 + 414 + 300’, ‘993’)
(‘979 - 990’, ‘-11’)

Table 1: Examples extracted from training partitions of discriminative and generative datasets.

2.3 Data

To the best of our knowledge, there are no publicly available datasets that are well-suited to our chal-
lenge. However, due to the nature of our problem, we found that it is in fact possible to generate our
own data as necessary. We thus constructed two novel datasets – one for each task. For each of our
datasets, we generate expressions based on three fundamental operations: Addition, Subtraction,
and Multiplication. Division was excluded due to the potential presence of non-terminating real
numbers in the output (though we could imagine implementing a rounding strategy if we desired).

For the discriminative data, we formulate expressions that represent supposed mathematical equiva-
lences. We ensure during the generation of this data that there are an equivalent number of positive
and negative examples, where each example has a binary label describing whether it is valid or not.
We generate sequences consisting purely of addition, subtraction, or multiplication, as well as input
sequences that contain compositions of these operators. Every operand in a sequence is restricted to
have at most 3 digits.

For the generative set, the input likewise consists of random sequences of 3-digit integers, where we
once again generate data that consists purely of addition, subtraction, multiplication, or combina-
tions of these. The target output is the respective mathematical evaluation of each sequence. See the
figure below for samples from some of our datasets.

For each sequence type (addition, subtraction, multiplication, and combination) in each dataset, we
generate 10000 examples for training, 2000 examples for developmental tuning, and 2000 examples
for testing.

2.4 Models

We have implemented a set of models to apply to our data. We first constructed the following
baseline models for experimental comparison:

• Artificial Neural Network (ANN) To serve as a baseline for the verification task, we con-
struct a standard two-hidden-layer ANN with tanh non-linearities and 50 nodes at each
hidden dimension. Since input sequences can vary greatly in length, we sum over each of
the character vectors (which we learn during training) to obtain a single-vector represen-
tation of an input expression, which we finally pass into the network. The output of the
network is a simple binary label indicating whether the input equation is valid.

• Bigram Baseline For a baseline for the task of evaluation, we implemented a modified
version of bigrams, where we take counts of the output characters that correspond to each
pair of corresponding digits of inputs.

We implemented the following more nuanced models for verification and evaluation:

• Discriminative Recurrent Neural Network (D-RNN) The first model we implement for
our task of verification is a Discriminative RNN. In this framework, we simply pass in each
sequence one character at a time, and continually update our hidden state of the network.
The final hidden state is then passed to a binary softmax classifier which outputs a label.

• Discriminative Gated Recurrent Unit (D-GRU) We build a model equivalent to that of
the D-RNN, except that we now replace the network structure with a GRU. We once again
utilize a binary output labeling.
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• RNN Encoder-Decoder Our first main model for the generative task of evaluation is an
encoder-decoder. As mentioned before, since our task is essentially that of machine trans-
lation, we would expect that models which perform well on translation would excel at the
task of evaluation. We thus implement an RNN Encoder-Decoder with a single hidden
layer at each time-step, where both encoder and decoder are standard RNNs. The final
hidden state of the encoder is passed to the decoder, which outputs tokens until it reaches a
stop token.

• Long Short-Term Memory (LSTM) Though we expect the standard Encoder-Decoder
model that was described above to perform well on reasonably sized sequences, it is most
likely the case that it would not generalize to longer or more complicated expressions,
where vanishing or exploding gradients might become an issue. Due to the success of
LSTMs at “memorizing” long inputs, we decided to implement an encoder-decoder based
on this model as well. Note that we use an LSTM structure for both the encoder and the
decoder (though it might certainly be reasonable to only set the encoder as an LSTM).

• Gated Recurrent Unit (GRU) Due to the presence of special “gates” which allow specific
retention through the network [4], we would expect GRUs, as with LSTMs, to succeed
especially in modelling more complicated operations or longer expressions than the stan-
dard RNN. We thus implement an encoder-decoder model with GRUs serving as both the
encoder and the decoder.

• Recurrent-Recurrent Neural Network (R-RNN) We now make the fundamental realiza-
tion that many mathematical operations can involve complex interactions between digits
that are not clearly related to each other in terms of position. For example, multiplication
between two numbers is a quadratic process, involving iterations through unique pairs of
numbers, where each pair contributes to the output in a non-direct way. However, we no-
tice that the RNN and GRU essentially represent translators that make a linear pass across
the input data. Thus, in some sense, these linear models are perhaps innately constrained,
since multiplication requires O(n2) work, where as standard recurrent networks run lin-
early (O(n)) in the input size. This suggests the fundamental need to have a model that
is able to more explicitly capture these subtle interactions between inputs. We thus pro-
pose a new model to achieve exactly this power of representation, which we now call a
Recurrent-Recurrent Neural Network (R-RNN).
The structure of our network is shown in the figure below. The entire intuition is that
instead of directly inputting the characters of a sequence into our encoder, we can model
their pairwise interactions by first putting each character through a sub-RNN that relates a
given character to all characters in the sequence. That is, if s is the index of a particular
character in a sequence, then we can express a single hidden state of a sub-RNN as:

hs,t = f(Wx · L[xt] +Ws · L[xs] +Wh · hs,t−1)

where f is a standard non-linearity (we use tanh which seems to provide superior results).
Thus, the term L[xs] is being incorporated at every timestep in the RNN, and is related to
each other character in the sequence L[xt]. Each final hidden vector then serves as the input
to a larger RNN that serves as the main encoder for the model. Thus, for each timestep
{1, 2, . . . , T}, we have that the corresponding hidden vector h′t of the overall network is
given by:

h′t = f(Wx′ · ht +Wh′ · h′t−1)

Note that though we share the same set of parameters across each of the individual
component-RNNs, we utilize an entirely different set of weights for our main encoder.
This final hidden vector is passed into a decoder, where the decoder is a standard RNN, as
described earlier.
(Note that since our model abstracts away workings of the component recurrent networks
that constitute the encoder, we could easily replace these with GRUs or LSTMs to obtain a
more nuanced model, if desired.)
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Figure 1: The Recurrent-Recurrent Neural Network (R-RNN). Inputs are convolved over each
other via individual sub-networks. Each of these outputs will serve as input to a larger encoder,
which produces the final hidden state of an equation to pass to the decoder.

3 Experiments & Results

In this section, we now describe the experimental setup we use to evaluate our algorithms, and
discuss the accompanying results.

For all of our models, we relied on no existing codebases, and instead implemented everything our-
selves in NumPy and Theano to allow for more flexibility in experimentation. The entire codebase
can be found on GitHub [5].

We now define the metric for the evaluation of our models: the metric A calculates what percent of
individual digits were actually classified correctly:

A = 100% ·

N∑
i=1

len(ŷi == yi)

N∑
i=1

len(yi)

where ŷi is the predicted sequence of digits for an example i, and yi is the corresponding ground
truth output.

The results of applying our various experiments under this evaluation metric are shown below:

Model Train score Dev score

Bigram baseline 79.4% 74.6%
Set of RNNs 21.0% 20.9%
Set of RNNs (selective scrambling) 52.4% 51.9%

Discriminative RNN 90.2% 89.2%

In the following tables, we give the train, followed by dev scores.

Add Subtr Mult Comp

D-RNN 90.2% 89.2% 94.3% 93.4% 97.9% 92.6% 82.0% 80.7%
D-GRU 100.0% 95.8% 99.9% 95.6% 99.3% 81.3% 50.3% 49.7%
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Add Subtr Mult Comp

BB 76.4% 71.0% 59.1% 51.4% 42.7% 36.5%
RNN 95.0% 86.5% 88.1% 82.8% 13.9% 13.5% 7.2% 6.5%
GRU 99.8% 97.7% 99.6% 96.6% 62.9% 51.1% 35.1% 29.6%
LSTM 99.8% 97.0% 98.2% 93.0% 41.4% 40.9% 39.7% 26.5%
R-RNN 95.3% 95.1% 98.9% 94.6% 42.0% 41.3% 40.6% 27.3%

3.1 Transfer Learning

We expect that given that there are many similarities between mathematical operations – for exam-
ple, addition is conceptually a very similar operation to subtraction – that if we share the parameter
weights between these tasks, our overall performance will improve by a considerable amount.

Thus, as a sub-experiment, we train a GRU Encoder-Decoder network separately on addition and
subtraction data; we then test this network on data consisting of sequences that contain both addition
and subtraction operators, then transfering the parameters to train on the new task for a limited
number of epochs. We compare this result with another GRU model that we train without transfer
learning on the data. The results are shown in the table below.

Simpcomp Simpcomp (transfer)

GRU 47.2% 41.1% 38.0% 35.8%

Something interesting to later investigate is the relationship between the weights learned through
discrimination and those in the generative process – we would wonder if pre-training on the dis-
criminative weights might boost performance on generative tasks – or likewise if generative models
are inherently discriminative, and thus would allow them to excel in verification.

4 Analysis & Discussion

As we can see from our results, many of our models achieve exceptional performance on both the
discriminative and generative tasks.

For the task of verification, our baseline model outputs reasonable performance across all data types
despite being a simple model – for the process of summing over input vectors is an inherent loss of
information. Our D-RNN model, on the other hand, succeeds in obtaining a significant increase in
performance, reaching nearly 90% accuracy on the development set. The D-GRU framework, how-
ever, seems to excel in the areas of addition and subtraction. This is of course expected, since it is
a fundamentally more powerful model than either of the other two that we implemented. Addition-
ally, the results it obtains on the addition and subtraction data yield some very interesting insights.
In the figure below, we apply T-SNE to the hidden vectors that are generated by the D-GRU before
entering the softmax classifier. As we can see, there are several individual clusters that are forming,
and what is remarkable is that these are grouped together by output label. Thus, the model is clearly
able to learn representations of the data that are in keeping with their original structure.

We can also examine the actual “thought process” of the classifier. In the two images below, we
show the result of outputting at each timestep the confidence with which the D-GRU believes that
the sequence is valid. The first corresponds to the valid input “372 + 865 = 1237”, while the second
corresponds to the invalid example “372 + 622 = 821”.

Note that, as expected, the positive input does not become purely positive until the very end of the
sequence (since the equation does not actually become true until we reach the last digit). On the
other hand, the invalid expression is constantly maintained as negative throughout the entirety of the
forward pass.

Another interesting aspect of our verification experiments is that the standard D-RNN seems to
perform more optimally on the multiplication data (and hence the composed data, which includes
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Figure 2: T-SNE representation of hidden vectors output by discriminative GRU, for addition, sub-
traction, and multiplication. Notice how positives (1s) and negatives (0s) cluster together.

multiplication) than the D-GRU. Though it is not entirely clear why this might be the case, it seems
that perhaps the training conditions for the D-GRU might not have been entirely optimal, or the
model may not be inherently suited for multiplication, though this is less likely.

For our task of evaluation, we see that all of our models generally succeed in obtaining near perfect
performance for addition and subtraction, but once again, multiplication seems to be less easily
modeled by the networks, as expected, since the interactions are non-linear.

Our standard RNN performs reasonably well on both addition and subtraction data. We can obtain
some interesting insights int our model by examining the plots of character vectors that were learned
by the model during training. In the figure below, we apply PCA to obtain the top two components
of each of the character vectors.

Figure 3: Word vectors learned by the RNN during training.

As we can see, the model was independently able to order the numbers from 0 to 9 without any
prior knowledge of what the individual characters actually represented. What is also remarkable,
but perhaps coincidental is that the actual shapes spanned by these characters are also inverses of
each other – which is interesting since addition and subtraction are also inverses of each other. Thus,
the model has clearly learned how to assimilate some of the structure of the data.

Our GRU model, however, exceeds and obtains the best performance on nearly all the given tasks,
as expected. In the figures above, we obtain further interesting insight into our model by applying
PCA to visualize the hidden vectors that are output by the encoder for elements in our dataset (train
and dev).

For the addition data, red points are those equations with output larger than 1000 (more than 4 digits
long) whereas those that are blue are equations with output less than 4 digits long. We observe a very
clean separation between these two clusters, which is quite remarkable. For the subtraction data, the
red points correspond to negative answers, while blue correspond to positive ones – once again, the
model clearly learns the distinction between these two outputs without any prior knowledge.
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Figure 4: PCA applied to hidden vectors output by GRU for addition (left) and subtraction (right).

We also plot the word vectors for the GRU model in the figures below: notice how it too seems to
learn paraboloid shapes for the vectors, as well as symmetrically order the numbers from 0 to 9 into
proper shape.

GRUs, in general, seem to outperform LSTM, both in terms of computational efficiency and accu-
racy. It may perhaps be that LSTMs are too complex of a model for some of the tasks at hand, and
will more likely perform better asymptotically as sequences grow longer.

For transfer learning, we would have expected an improvement as a result of applying this technique;
however, because the amount of data is already relatively quite large, we might expect that the
composition dataset is large enough to render such transfer unnecessary, so that learning from scratch
is more beneficial.

Finally, our new model R-RNN, has shown that it is capable of achieving near equivalent perfor-
mance on addition and subtraction, while still attaining boosted performance on multiplication with
respect to the standard RNN. One possible reason that the performance was not as great as expected,
however, is that the model is quite large and thus needs sufficient amount of training in order to con-
verge to a more optimal solution. We suspect that the model still retains the potential for superlative
performance on a variety of mathematical operations under the right conditions. Some examples
that it does output correctly for multiplication are shown below.

’17 * 780 = 13260’
’705 * 77 = 54285’
’53 * 893 = 47329’

5 Conclusion

In this report, we have investigated various methods of analyzing and evaluating symbolic mathe-
matical expressions. We have devised both discriminative and generative formulations of our task,
in which we verify and evaluate arbitrary input expressions, respectively. We have also generated a
novel dataset particular to our challenge that has allowed us to train a variety of recurrent models on
significant amounts of data, and have additionally defined new metrics for evaluation.
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Our results indicate that our simpler models are capable of achieving reasonable performance on
basic operations such as addition and subtraction, though the composition of such functions as well
as multiplication prove to be somewhat more challenging. Our more complex models appear to
excel at the basic operations, reaching near perfect accuracies in some cases, but also face similar
difficulties with multiplication, in both generative and discriminative tasks.

We thus have devised a new model, the Recurrent-Recurrent Neural Network (R-RNN), that
attempts to more appropriately incorporate the complex interactions associated with super-linear
operations such as multiplication. Though the performance is not as superlative as hoped, the relative
improvement of this framework over the other models suggests that perhaps further fine-tuning is all
that is necessary to achieve desired results.

Finally, our analysis of the models’ internal representations of the data indicates that the networks
are, in fact, extracting some fundamental properties of numbers and mathematics – which, though
expected, is quite remarkable since no information about the input sequences was assumed during
training. Thus, we see our models are beginning to independently learn what rules are associated
with the mathematical language.

6 Future Work

From our results, we can see that there are several directions we can pursue for the continuation of
our project.

An initial goal would be to first obtain enhanced results on more complicated operations, such as
multiplication and division. Though our generative models perform reasonably well on our data,
there is certainly still some room for improvement; we could perhaps utilize other techniques to
boost performance, such as ensembling, drop-out, or bi-directional networks.

We could then generalize to much longer or complicated expressions, by applying 1-D Convolutions
or Recursive Neural Networks to our data. These models, like our R-RNN, can perhaps extract more
intricate relationships between individual characters, and we would expect these models to perform
well since mathematical expressions are inherently recursive.

An interesting experiment to finally pursue is the generation of mathematically equivalent expres-
sions, as opposed to simple evaluations. Thus, the input might be “123 + 3”, and the output could
be (out of the many possibilities) “80 + 46”. This would certainly test the generalization capabilities
of the models, and would indicate a deeper understanding of the workings of mathematics.

We thus consider the challenge of learning-based evaluation to possess much potential for develop-
ment, and it is our hope that the amount of subsequent work in this domain will continue to multiply
over the future.
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