Recursive Nested Neural Network for Sentiment

Analysis
Milad Sharif Hossein Karkeh Abadi
Stanford University Stanford University
msharif@stanford.edu hosseink@stanford.edu
Abstract

Early sentiment prediction systems use semantic vector representation of words
to express longer phrases and sentences. These methods proved to have a poor
performance, since they are not considering the compositionality in language. Re-
cently many richer models has been proposed to understand the compositionality
in natural language for better sentiment predictions. Most of these algorithms are
using phrase-tree-based Recursive Neural Networks (RNNs) architectures. In this
project we first reproduce the results of state-of-the-art algorithms for sentiment
predictions and then propose a different model called Recursive Nested Neural
Networks (RN3) with a higher sentiment prediction accuracy.

1 Introduction

A basic task of sentiment predictors is classifying the polarity of a given sentence such as a movie
review. The expressed opinion can be positive, negative, or neutral. Many of the early sentiment
prediction systems treat each sentence as a bag of words and try to assign a positive or negative score
to each word in isolation [1]. These models can make wrong prediction for sentences that although
have positive words, convey a negative message. To further understand the compositional effects in
natural language, richer and more complex models are required.

In [2], authors propose a phrase-tree-based recursive neural network to compute compositional vec-
tor representations for phrases of variable length and syntactic type. They study the Recursive Neural
Tensor Networks (RNTN) which can achieve an accuracy of 45.7% for fined grain sentiment clas-
sification. Authors in [3], introduce a deep RNN constructed by stacking multiple recursive layers
to utilize the hierarchical capacity of deep neural networks. Their model has achieved an accuracy
of 49.8% in a very deep neural network and by employing the dropout technique in which they
randomly set the entries of hidden layers to 0 with a probability called the dropout rate.

In this project, we first implement RNTN as our baseline model and then propose Recursive Nested
Neural Network (RN3) to further improve the prediction accuracy. As opposed to RNTN, which
directly adds the quadratic terms, RN3 tries to increase the interaction between the input vectors by
incorporating additional hidden layer. We show RN3 outperforms the RNTN with a much smaller
set of parameters and can be trained much faster.

The rest of the paper is organized as follows. In section 2 we describe the dataset that we used for
this project. In section 3, we introduce different recursive models including RNTN, and present
RN3. In section 4, we evaluate different models and compare their prediction accuracies.

2 Dataset

We use Stanford Sentiment Treebank dataset [2] which allows us to train and evaluate compositional
models. The dataset consists of 11,855 single sentences extracted from movie reviews. These re-



- s 0.6
c o4
g E 0.2
5 ° 0.0
c
[} 1.0
o H
$os
u6 g 0.6
8 %04
5 0.2
15 20 25 ** "0 1 2 3 4
N-Gram length o .
(b) Distributions of sentiment
(a) Normalized histogram of sentiment annotations at values for unigrams and full
each n-gram length sentences

views are further parsed to extract 215,154 unique phrases and labeled into five classes: negative,
somewhat negative, neutral, somewhat positive, positive. Figure 1 shows the distribution of senti-
ment annotations for different n-grams. As we can see in the figure, most of shorter n-grams are
neutral, while full sentence semantics are well distributed.

3 Models

3.1 RNN: Recursive Neural Network

Recursive neural networks (RNNs) comprise an architecture in which the same set of weights is
recursively applied within a structural setting: given a positional directed acyclic graph, it visits the
nodes in topological order, and recursively applies transformations to generate further representa-
tions from previously computed representations of children. Figure (1) shows the RNN structure for
phrase “not so good”.

The prediction and recursive equations for the RNN model are as follows:

o= 107 |1] +0),

9 = softmax(Uh + by)
where hp, by, and h, are the output vector of the hidden layer in a parent node, and its left and

right child nodes, respectively, and 3 is the predicted probability vector for all classes. In the first
equation, f(.) is a nonlinear function which can be tanh(.) or ReLU(.).

not so good

good

Figure 2: Recursive Neural Network structure for phrase “not so good”



3.2 RNTN: Recursive Neural Tensor Network

The main difference between RNTN and RNN is that in the former the model utilizes a richer
compositionality function to enforce a greater interaction between children node vectors in creating
the parent vector. In RNTN additional quadratic terms of children’s vector representation are added
to generate the parent vector representation. The equations for the RNTN model is as follows:

r

g h h
hy = [( [h:] y[tdl |:hl:| + W |:h7l“:| +b),
9 = softmax(Uh + by)

where d = dim(h), and V is a d x 2d x 2d matrix.

3.3 RN3: Recursive Nested Neural Network

In order to improve the predictor’s performance we propose a new model which tries to fit a more
complex compositionality function by adding new features through a nested neural layer whereas
the RNTN model in which quadratic terms are added manually. Figure 3 shows how the RN3 model
works. In order to compute a parent vector b, € R <1 the model first computes new features
By € R¥*1 using a nested neural layer, and then using these new features along with the children’s
vector, it computes the parent vector representation. Then each node uses a softmax classifier on its
vector representation to predict its label. The forward propagation equations for RN3 model is as
follows:

B = FW ) m +b0),

hy
hy
h"’L

4 = softmax (W) h + b))

hp = f(W® +63)),

In order to train our model we need to find parameters to minimize the cross-entropy error between
the predicted distribution y(*) and the true one-hot distribution t() of each node i. The set of
parameters for this model is 6 = (W (1), ™", W2 ) W) p() L), where L is the matrix of all
vector representations of words in the dictionary. So, the cost function we need to minimize is

J(0) = > CE(y™,t@) + 0],
i=1

e

(0e000)

W

(00000 (000000

[N T

Figure 3: Computation of the parent vector from children vectors




In order to apply Stochastic Gradient Descent (SGD), we need to find the derivative of the cost
function with respect to the model’s parameters using back propagation method. We can easily
prove the following equations for derivatives:

oJ . s
9b(s) = Z(t( ) — y( ))7

?

9J i Ny @HT s
S = Z(t( ) — RO L AW ),

3

9J 0)
w2 261 ’

T
+ AW,

h
07 S50 :
e 20 L}Z"

m

oJ
ap()

> 60 2d + 11 2dy + d],

o0J
ow )

T
=3 6512du + 1+ 2dy + du] [Zl] A,

where (59 and 59 can be computed recursively from the following equations when f is the ReLU
function: ) , ) , ; ;
57 = D (hD > 0)o(WE (D — y D) 4 607 4 6P))
557 =3 (h5) > 0)o(WPs1)

where for k € {1, 2},

slup) 5,(€pi)[1 s dy] if iis aleftnode
‘“ 8" [dy +1,2d,] ifiis a tight node
For every leaf node ¢ we need to add the derivative with respect to L[w;] using the following equa-

tion:
o0J
OL[w;]

- W(s)(t(i) _ y(i)) + §§i,up) + 55@“1’).

4 Experiments

We implemented all three models from scratch in Python. In order to optimize different models,
we use a dev set to cross-validate different hyper-parameters such as regularization of the weights
(A), word vector size (d,,), hidden layer dimension (d,,) as well as the mini-batch size for AdaGrad.
Optimal performance for RN3 was achieved at word vector sizes between 30 and 40 dimensions and
hidden layer dimension between 20 and 30. Figure 4 shows the accuracy of RN3 with optimized
hyper-parameters over training and dev set versus the number of epochs. As shown in the figure, 15
iterations over the training set achieves the highest dev accuracy. RN3 can be trained much faster
comparing to RNTN as it has a lot less parameters.



o.
—— Training accuracy
—  Dev accuracy
e
0.7F W
ﬁ\/

/4/
Dy

°
a

Accuracy

0.5F

035 0 5 10 15 20 25 30 35
Number of Epochs

Figure 4: Training error and dev error over number of epochs

We compare RN3 to other recursive models such as RNTN. We report the accuracy on the test set
which is about 20% of the sentences in Treebank dataset. Following table shows the overall accuracy
numbers for fine grained prediction at all phrase lengths and full sentences. As we can see in this
table, RN3 outperforms all other models with 47.2% accuracy in full sentence sentiment prediction.

Fine-grained
All root
VecAvg 733 327
RNN 79.0 432
RNTN  80.7 45.7
RN3 81.3 472

Model

In order to make detail comparison of RN3 and other recursive models we looked at separate accu-
racy of each n-grams as well as cumulative accuracy for different models. As shown in Figure 5,
RN3 works very well on shorter phrases, while have similar performance for larger n-grams.

— RN3
— RNTN|[|
RNN ||

°
N

Accuracy
o
2]

°
S

|
2

°
W

0-2 5 1 20 25

o 15
N-Gram length

(a) Accuracy for each set of n-grams

Cummulative Accuracy

0.60 5 1 20 25

[ 15
N-Gram length

(b) Cumulative accuracy of all < n-grams

Figure 5: Accuracy curves for fine grained sentiment classification at each n-gram lengths



(a) All (b) root

Figure 6: Confusion matrix with truth down the y axis, and our models guess across the x axis

Figure 6 shows the confusion matrix of the resulting sentiment prediction on the test set using RN3
model for both all-phrases and full-sentence cases. As we can see, for the full-sentence case the
largest error is in the prediction of “positive” reviews which are misclassified to “somewhat positive”
in 68% of the cases. But for the all phrases case, the largest classification error is for *negative’ class
with a misclassification error of 69%.

One of the main strength of RNTN is correctly classifying reviews with positive and negative nega-
tions. We manually investigated RN3 to see if it can correctly classify reviews with negations. Figure
7 shows an example of such a review with negation which is misclassified by RNTN but correctly
classified by RN3.

Even

Russian  Ark

scenes mesmerizing

most tedious

Figure 7: Example of correct prediction for a negation

We probe our model for its predictions on what the most positive or negative n-grams are, measured
as the highest activation of the “negative” and “positive” classes. Table 1 shows some n-grams which
RN3 their strongest sentiment.



Most positive n-grams

Table 1: Examples of n-grams which RN3 predicted the most positive and most negative responses

Most negative n-grams

bad, worst, stupid, bore, boring

amazing finesse, amazing breakthrough,
breathtakingly spectacular, gorgeous epic,
most brilliant

brilliant surfing photography, excellent
companion piece, beautifully detailed per-
formances, heartfelt and hilarious, mes-

powerful, brilliant, charming, excellent,
pleasant

phlegmatic bore, painfully unfunny, pa-
thetic junk, 88-minute rip-off, painfully
bad

wretchedly unfunny wannabe, barn-
burningly bad movie, the worst movie, this
pathetic junk, worst cinematic tragedies

merizing cinematic poem

References

[1] Mikolov, Tomas, et al.
arXiv:1301.3781 (2013).

[2] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, C. Potts, Recursive Deep Models for Se-
mantic Compositionality Over a Sentiment Treebank, Conference on Empirical Methods in Natural Language
Processing (EMNLP 2013)

“Efficient estimation of word representations in vector space.” arXiv preprint

[3] Irsoy, Ozan, and Claire Cardie. “Deep Recursive Neural Networks for Compositionality in Language.”
Advances in Neural Information Processing Systems. 2014.



	Introduction
	Dataset
	Models
	RNN: Recursive Neural Network
	RNTN: Recursive Neural Tensor Network
	RN3: Recursive Nested Neural Network

	Experiments

