Recurrent Recursive Neural Networks for
Sentiment Analysis

Amandeep Singh
Electrical Engineering Department, Stanford University

Abstract

In recent literature Recursive neural networks have been successfully used for fine
grained sentiment analysis in NLP. Recursive neural networks learn the structure
of a sentence and try to predict the sentiment of a given sentence. While these
conventional recursive neural networks are deep in structure/space, they are not
hierarchical/deep in time in their representation like a deep recurrent neural
network. In this project I am exploring a model that combines N layers of
recursive neural networks in a recurrent way to perform fine grained sentiment
analysis [1]. Essentially, each layer of the deep recurrent network is a recursive
neural network. The model gets trained by combining backpropagation through
structure to learn the recursive neural network and backpropagation through time
to learn the feedforward network. The proposed model is implemented and tested
on Stanford Sentiment Treebank [2]. We achieved an accuracy of 81.5% on the
task of 5-class fine grained sentiment analysis over each phrase. We also explore
the usefulness of various regularization techniques such as L2 regulation and
dropout [3-4] on training the model.

1 Introduction

Sentiment analysis is an important task in natural language processing. The
current state of the art methods for fine grained sentiment analysis use
recursive neural networks/recursive neural tensor networks (RNTN) [2]. In
recent literature there has been a distinction amongst notion of depth in
space/structure and depth in time [1]. While the recursive neural networks
are deep in structure, they are not deep in time, and hence in a way lack
hierarchy of conventional deep feedforward nets where each layer learns a
potentially more abstract representation of the input than the previous layer.

In this project | explore a model similar to [1], that stacks together N layers
of recursive neural networks in a recurrent way for fine grained sentiment
analysis. In particular each layer of the network is a recursive neural network,
and the recurrent neural network combines together N different recursive
networks together. Figure 1 shown below shows a more detailed
representation of the network. Stacking N recursive layers in a recurrent
manner allows each layer to learn a particular aspect of the sentence/phrase
which helps in achieving a higher sentiment classification accuracy.

o

2 Related Work

Sentiment analysis is an important Natural Language processing task and has
been studied extensively over the last few years. Before deep learning was
successfully demonstrated for this task, a large number of previous sentiment
analysis techniques were either based on using a bag of words model or
careful engineering of features. Deep learning methods have out-performed
these previous methods, and are currently the state of art methods for this
task. In particular, recursive neural networks and recursive neural tensor
networks [2] have been demonstrated to achieve very high accuracy for
sentiment analysis.

3 Our Approach

The model that | am using for this project is essentially based on the model
presented in [1]. In this model we combine together N layers of recursive
neural networks in a deep-feedforward manner to allow the model to have
depth both in space/structure and time. This is different from a regular
recursive neural network that has depth only in structure, and hence lacks the
ability to learn hierarchical features.

Figure 1 below shows the details of the model.

O

L *
4 » 4k
' 0 Q
4 » 4 »
[[
4 » 4 »
0 0 /[0
[] ® L]
0 N © Q
° L °
| love Deep Learning

Figure 1 : Operation of a recurrent recursive neural network

Formally, our model can be represented as under:

Given a binary tree structure with leaves having the initial representations,
e.g. a parse tree with word vector representations at the leaves, a re-current
recursive neural network computes the representations at each internal node
n as follows

O _ (w®@p® 4 @@ L @D,
Y = f (W OhG, + WORD, + VEOREY 4+ p®)

where n represents a particular node, I(y) and r(n) are the left and right
children of #, W, (D and Wg() are the weight matrices that connect the left and
right children to the parent for a layer i, V() is the weight matrix that connects
the (i — 7)!" hidden layer to the it hidden layer, and b(is a bias vector for
layer i.

We then have a task-specific output layer above the representation layer:
Yy = g(Uh, +c)

where U is the output weight matrix, ¢ is the bias vector to the output layer
and | is the final number of layers.

In a supervised task, y, is simply the prediction (class label or response
value) for the node #, and supervision occurs at this layer. For the sentiment
analysis task, y, is the predicted sentiment label of the phrase given by the
subtree rooted at . Thus, during supervised learning, initial external errors
are incurred on y, and back propagated from the root, toward leaves.

It may be noted that for our implementation the function f was chosen to be
the ReLU function and the function g was chosen as soft-max.

3.1 Training Procedure

The proposed model was trained using back-propagation. Back-propagation
for the above network can be thought as a linear combination of back-
propagation through structure and back-propagation through time. Essentially
for any particular node n in a layer i, it receives an error from its parent
nodes in layer i, and from the node n in the layer i+1. The figure below shows
the error-flowing in the backpropagation network. To ensure the
backpropagation is implemented correctly, a simple gradient checking
mechanism was implemented that checks the validity of the gradients.

¢} . .
o Direction of
) error flow
0
]
>
Q
4 n
‘ []
ld
0 " .
[() s " / |
o /0 0 /7 Q :
o . ¢ »
| love Deep Learning

Figure 2 : Error propagation in the network

Accuracy

4 Experiment and Results

Dataset Used: To validate the above recurrent recursive model | used the
Stanford Sentiment Treebank [2] dataset. The dataset consists of 215,154
labeled phrases from 11,855 sentences. Each of the 215,154 phrases is labeled
from 5 possible classes, namely, very negative, negative, neutral, positive
and very positive. It may be noted that in this report we are trying to predict
the sentiment of each of the phrases in the sentence.

Choice of Word Vectors: | used randomly initialized word-vectors as the
inputs rather than using pre-trained word2vec or glove word-vectors. The
word-vectors were also trained as part of back-propagation. The word-vector
dimension was taken as a variable and was chosen by using cross-validation.
The final chosen word-vector dimension was 75. It may be noted that since
75 was the largest word-vector dimension | simulated with (due to training
time limitations), it is likely that the performance will improve if we use
300-dimensional pre-trained word2vec or glove word vectors.

Choice of Regularization: Regularization plays a critical role to ensure that
we do not over-fit the model. Further, the role of regularization increases as
we increase the model complexity. In the present implementation | tried three
different regularization methods:

e L2 norm Regularization
e Dropout Regularization
e L2 norm + Dropout regularization

Amongst the three, L2 + dropout regularization, worked the best.
Interestingly, it may be noted that Dropout Regularization [3-4] without the
L2 norm regularization does not work. This is because of the choice of ReLU
non-linearity which is a type of non-saturating non-linearity. ReLU and no
L2 norm regularization essentially causes a blow-up in magnitude of values.
Figures 3 and 4 below show training set and dev set accuracies across a
number of training epochs with and without dropout regularization (Both have
L2 norm regularization). As is evident from the two plots below, with L2
norm regularization alone, the gap between training and dev set accuracies is

Training and Dev Accuracies vs number of Epachs

Training and Dev Accuracies vs number of Epochs

— Training Accuracy
L| — Dev Accuracy

0.70 — Training Accuracy ||
— Dev Accuracy 0.68 , , . . .
5 . . . n n o 5 10 15 20 25 30
Figure 4: Training with L2 norm Regularization Figure 3 : Training with L2 Norm + Dropout Regularization

Figures above show a comparison between L2 norm and L2 norm+dropout regularization. As is evident from
figure 4, the difference between training set and dev set accuracy is smaller when we use L2 + dropout
regularization, thus emphasizing that dropout improves generalization.

much higher compared to the gap when we use L2 norm + dropout
regularization.

Choice of Number of layers: Since the network is a recurrent network, an
important advantage is that the network can be arbitrarily deep. In practice |
found the dev set accuracy increases upto 3 layers, and started decreasing as
the number of recurrent layers was increased beyond 4. This can be attributed
to increased over-fitting in the model for the choice of dataset at hand.

Choice of Training Algorithm: As mentioned in section 3 above, the network
was trained using Back-propagation with stochastic gradient descent. Three
different versions of stochastic gradient descent, namely, regular vanilla
stochastic gradient descent, Adagrad[5], and RMSProp[6], were implemented
to understand the difference in performance because of the choice of training
algorithms.

Figure 5-7 below shows the training and dev set accuracy for the three
stochastic gradient variants. The plots below assume a word vectors
dimension of 75 and no drop-out is used. As is evident from the graph
Adagrad algorithm seems to be best in terms of speed, and overall
performance. It is expected that the vanilla stochastic gradient descent
achieves the same performance levels as ada-grad, but it takes much longer
training time to reach the same training data accuracy.

Training and Dev Accuracies vs number of Epochs

— Training Accuracy
— Dev Accuracy

Training and Dev Accuracies vs number of Epochs

— Training Accuracy
— Dev Accuracy 0.86

Accuracy

0.80 /\ \/ o 4‘/\/"""‘\//"\/\\\/_,7_1_\/
a.79l/
0.70 0.78
5 10 15 20 25 30 0 5 10 15 20 25 30
Number of Epochs Number of Epochs
Figure 6 : Stochastic Gradient Descent with RMSProp Figure 7: Vanilla Stochastic Gradient Descent

100 Training and Dev Accuracies vs number of Epochs

— Training Accuracy
— Dev Accuracy

0.95

Accuracy
=)
©
o

o
®
v

0_80/%

0.75
0

E; 1b 15 Zb 2‘5 30
Number of Epochs
Figure 5 : Stochastic gradient descent with Adagrad
The graphs above suggest that Adagrad learning method outperforms the other two learning algorithms is terms of
speed and accuracy. It may be noted that same learning rate was used for all the three algorithms to allow for a
fair comparison. However, the wiggles in the figures 6-7 above suggest a smaller learning rate might be more
optimal for RMSProp and Vanilla stochastic descent. The learning rate used was 1.5E-2.

Summary of Final Results:

This section summarizes the final results that | achieved with a recurrent
recursive neural network. The best results were achieved with a 3-layer
recurrent neural network, trained with stochastic gradient descent with
adagrad. The word-vector dimension was chosen to be 75. Figure 8 below
shows the training and dev set accuracy for the final set of chosen parameters.
The best accuracy achieved was 81.5%.

Training and Dev Accuracies vs number of Epochs

—— Training Accuracy
— Dev Accuracy

0.95}

0.90

Accuracy

0.85}

0.80

0.75
0

L L n L .
5 10 15 20 25 30
Number of Epochs

Figure 8 : Dev and training accuracy for final set of parameters

The table below compares the achieved accuracy with other prior arts
methods.

Recurrent RNN 81.5%

RNTN [2] 80.7%

2-Layer RNN 80.1%

Simple RNN 79.5%
5 Conclusion

In this project | explored recurrent recursive neural networks [1] for use in
fine-grained sentiment analysis of sentences. | was able to achieve an overall
accuracy of 81.5% compared to 80.7% from [2] and simple RNNs. The dataset
used for calculating the accuracy is the Stanford Sentiment Treebank [2]. The
major advantage of the recurrent structure of the model is that it allows the
model to learn hierarchical features of sentences also, since it is deep, both
in structure and time. Further, | compared the performance of various variants
of stochastic gradient descent algorithms. Compared to other algorithms,
adagrad algorithm outperformed the other algorithms. Further, various
different regularization techniques were evaluated to avoid over-fitting the
data. The best regularization technique was observed to be L2 norm +

dropout. It was interesting to find that dropout alone does not work well
because of the non-saturating nature of ReLu function. Adding the L2 norm
to regularization avoids the explosion of output observed with dropout alone.

6 Future Work

In the current implementation of the model, I initialized the word vectors to
be Gaussian random variables, and the word vectors were trained together
with the structure. It was observed that the best performance was achieved
for word vector dimension of 75, which was also the highest dimension used
in my cross-validation. This suggests using higher word-vector dimension
might improve the performance further. Also, using pre-trained Glove or
Word2Vec models should help improve the performance.

It may be observed that the recurrent-recursive neural network, while being
deep, is still feedforward in nature. The feedforward structure of the network
does not allow information to flow backwards, and thus the network is unable
to correctly predict the sentiment of any phrase which derives its sentiment
from a phrase later in that sentence. For such scenarios it may be better to
have bi-directional recursive model as each layer of the recurrent network.
The bi-directional model will allow information flow from sentence parse
tree leaves to root, and from roots back to leaves thus alleviating the above
problem.

Recently tree structured LSTM models have been proposed [7]. It could be
interesting to combine the tree structured LSTM model in a recurrent neural
network to take the advantages of both the recurrent and LSTM Tree
structured models.

7 References

[1] Ozan Isroy and Claire Cardie, Deep Recursive Neural Networks for Compositionality
in Language, in Proceedings of Advances in Neural Information Processing
Systems, 2014

[2] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew
Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
EMNLP 13, 2013.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks in Proceedings of NIPS, volume 1, page 4, 2012

[4] George E Dahl, Tara N Sainath, and Geoffrey E Hinton, Improving deep neural networks for
Ivesr using rectified linear units and dropout, in Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pages 8609-8613. IEEE, 2013

[5] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online
learning and stochastic optimization. JMLR, 12:2121-2159.

[6] Coursera course on Neural networks for Machine Learning by Geff Hinton.

[7] Kai Sheng Tai, Richard Socher, and Christopher D. Manning, Improved Semantic
Representations From Tree-Structured Long Short-Term Memory Networks,arXiv preprint, 2015

