On the effectiveness and simplicity of linear recursive
neural network

Peng Xu Ruoxi Wang
ICME, Stanford University ICME, Stanford University
Stanford, CA 94305 Stanford, CA 94305
pengxu@stanford.edu ruoxi@stanford.edu
Abstract

We address the simplicity and effectiveness of linear recursive neural network
(RNN) for semantic compositionality. This approach, being very simple, achieves
performance that is higher than commonly used models. In particular, it beats
the RNN with nonlinear activation function in predicting compositional semantic
effects. Further, we show that this model has very close performance to the best
result achieved by recursive neural tensor network (RNTN), which takes a 3-5
hours to train. This is in contrast with the linear RNN which only takes a couple
of minutes.

1 Introduction

We consider the problem of predicting compositional semantic effects. Sophisticated models rely on
rich labeled dataset and powerful compositional functions to improve performance. There has been
a large body of research using recursive neural networks related methods for sentiment analysis. The
simplest method in the family is the standard recursive neural network. Improved versions have been
proposed to achieve higher accuracy: Matrix-vector RNN (MV-RNN) [[1] represents every word and
phrase in the parse tree as a vector as well as a matrix. Recursive Neural Tensor Network (RNTN) [2]
uses tensor-based composition function for all nodes. These methods have achieved higher accuracy
than the standard RNN model, and other commonly used models. Though promising, these methods
suffer from very expensive computational cost. In this paper, we will revisit the RNN method for
sentiment analysis, and address that by using linear activation function, combined with the RNN
model, one can already be very affective in capturing semantic compositionally, while being very
simple.

When using the RNN, it is common to use nonlinear activation functions such as ReLLU and tanh.
Nonlinear activation functions are expected to introduce more complexity into the model, and have
faster convergence rate than linear function. However, different from simple fully connected neural
network—where using linear function for all layers is “equivalent” to a standard linear system—the
RNN model itself exists more complexity. Further, nonlinearity always exist in the form of satura-
tion, roundoff errors, and inconsistency of the linear slope. These have motivated us to investigate
in the effect of using linear activation functions in the RNN setting.

In the remainder of the paper, we describe our approach in and show our experiment
results in...

2 Approach

In this section, we describe our setting to address the effectiveness of linear RNN. We take advantage
of a large labeled dataset: The Stanford Sentiment Treebank. We first introduce a two-layer RNN

model.

B

R — f(W(l) (%fft + b(l))
hRi_qht

h2) — f(W(z)h(l) + b(Q))

4 = softmax(UR™M) + b(*)

where h(Lle) 7 and hgi) gt are output (or word vector) of the layer beneath it on the left and right, re-

spectively. W) € R4%2d 11/(2) ¢ Rdmiddie Xd gre the weight matrices; f is the activation funciton;
9 is the predicted label at this layer. An example of a 2-layer RNN is shown in [Figure 1

Node 1

2)|

\ [

Lys

Figure 1: Example of recursive neural network (RNN)

Next, we consider five models, with all the combinations of nonlinearity and number of layers, to
show the effect of using linear activation function. All models are based on the example in[Figure 1]

model 1 (denoted as hiLhy), two layer RNN with flow from A1) to h(1). The activation
function between hidden layers A1) and A1) is the identity function; while the activation
function between hidden layer h™M and h(® are nonlinear function (ReLU). (see subplot

(a)in Figure 2)

model 2 (denoted as hinLh;), two layer RNN with flow from R to h(Y). The activation
function between hidden layers A1) and A is nonlinear; while the activation function
between hidden layer A(!) and h(?) is the identity function. (see subplot (b) in

model 3 (denoted as honLhy), two layer RNN with flow from A(?) to h(1). The activation
function between hidden layers h(?) and h(}) is nonlinear; while the activation function
between hidden layer A1) and h(?) is the identity function. (see subplot (c) in [Figure 2)

model 4 (denoted as hoLhy), two layer RNN with flow from h(®) to h(1). The activation
function between hidden layers A and h(V) is the identity function; while the activation
function between hidden layer A(!) and h(®) is nonlinear. (see subplot (d) in [Figure 2)

model 5 (denoted as hi L), single layer RNN, the activation function between hidden layers
is linear. (see subplot (e) in[Figure 2)

L5 [0] L[] L
lnL lnL lnL
K2 K@) K

-
-
-

Y

<
S

(a) model 1 (h1Lh1), two layers, linear
between h") and h(l), nonliner between
A and A2

T [Y- [
, /

(c) model 3 (henLh1), two layers, lin-

ear between h") and h(g), nonlinear be-
tween h® and BV

nL nL nL

=
=

=
=

=

-
-
-

<
<
<

(b) model 2 (hinLh.), two layers, non-
linear between A" and h(l), linear be-
tween A" and A(?

(L] [[[
| |

(d) model 4 (haLh1), two layers, non-

linear between A" and h(2), linear be-
tween A and B

K

h =

b

(e) model 5 (h1L), single layer, linear

between A" and AV

Figure 2: Illustration of five models. The flow charts are based on the example shown in
L means linear function, and nL means non-linear function. For linear, we used identity function;

for nonlinear, we used ReLU.

3 Experiments

We implement all the RNN models described in the previous section on the Stanford Sentiment
Treebank dataset. And we evaluated accuracy of the fine-grained sentiment classification.

For all the models, we used dev set and cross-validate over the length of the layers and the step size.
The batch size is prefixed as 30 in all the experiments. From we see that all the models
we have tested achieve higher performance than those commonly used models (except RNTN). It
is worth noting that the single layer linear RNN model (h;L), which is the most simple model,
achieves accuracy over 80% when the word vector length is only 10. This is very close to the best
performance achieved by RNTN, which used 3-5 hours to train; and this is in contrast with the linear
RNN model which only takes around 5 minutes to achieve 80.38% accuracy.

Table 1: Accuracy for fine grained (5-class) using different models. For the root accuracy, we only
tested on model 5 (h1 L)

Model VecAvg RNN MV-RNN RNTN hiLhy hinLh, honLhq hoLhq h1L

All 73.3 79.0 78.7 80.7 79.48 79.72 80.38 79.87 80.38
Root 32.7 432 44 .4 45.7 433
References

[1] Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. Semantic compositionality
through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language Learning, pages 1201-1211.
Association for Computational Linguistics, 2012.

[2] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the conference on empirical methods in natural language processing (EMNLP), volume

1631, page 1642. Citeseer, 2013.

Appendix
d | batchsize | step size | running time | epochs | training accu- | dev accura- | test accura-
per epoch racies cies cies
5 30 2e-2 21.2 30 79.87 76.44 76.33
10 30 2e-2 22.3 20 87.00 80.11 79.98
15 30 2e-2 23.8 13 87.02 80.28 80.23
20 30 2e-2 24.1 9 85.39 80.38 80.01
25 30 2e-2 23.6 10 86.41 80.34 80.18
30 30 2e-2 25.7 10 86.24 80.51 80.40
35 30 2e-2 25.7 10 87.35 80.15 80.13
40 30 2e-2 28.7 10 87.01 80.46 80.38
45 30 2e-2 26.3 6 86.75 80.46 80.15

Table 2: single linear layer recursive neuron network

d | h | batchsize | step size | running time per | epochs | training accu- | dev accura- | test accura-
epoch racies cies cies
5 30 Se-2 21.2 79.87 76.44 76.33
10 30 Se-2 22.3 87.00 80.11 79.98
15 30 Se-2 23.8 85.85 80.28 80.23
20
25
30 | 15 30 Se-2 343 9 86.24 80.01 80.15
30 | 10 30 Se-2 30.3 9 85.27 80.43 80.43
30| 5 30 Se-2 329 15 86.34 80.19 79.82
35
40
45 30 | 2e2 [263 | 6 [8675 | 80.46 | 80.15
5115 30 Se-2 6 77.43 77.76 80.01
10 | 15 30 Se-2 5 81.20 78.570 78.01
15| 15 30 Se-2 9 83.52 76.71 75.99
20 | 15 30 Se-2 8 84.40 77.72 77.38
25 | 15 30 Se-2 9 84.67 80.30 80.34
30 | 15 30 Se-2 11 86.27 80.62 80.27
35| 15 30 Se-2 10 86.42 80.59 80.44
40 | 15 30 Se-2 5 85.00 80.65 80.38
45 | 15 30 Se-2 9 85.92 80.60 80.35
change L with NL (L3)
30| 5 30 3e-2 30 83.79 78.11 78.27
30 | 10 30 3e-2 30 84.89 79.74 79.43
30 | 15 30 3e-2 29 85.96 79.40 79.27
30 | 20 30 3e-2 29 86.47 79.09 78.86
30 | 25 30 3e-2 21 86.61 79.54 79.39
30 | 30 30 3e-2
30 | 35 30 3e-2 19 86.30 80.10 79.87
30 | 40 30 3e-2 21 86.24 78.70 78.26
30 | 45 30 3e-2

Table 3: single linear layer recursive neuron network

d h | batch size | step size | running time per | epochs | training accu- | dev accura- | test accura-
epoch racies cies cies
2L

5 |30 30 3e-2 28 85.41 77.68 77.51
10 | 30 30 3e-2 20 88.68 78.52 78.34
15 | 30 30 3e-2 18 89.34 79.23 78.89
20 | 30 30 3e-2 7 84.75 77.93 77.68
25 | 30 30 3e-2 9 90.29 79.80 79.61
30 | 30 30 3e-2 10 89.61 79.71 79.39
35| 30 30 3e-2 8 89.62 79.69 79.65
40 | 30 30 3e-2

45 | 30 30 3e-2 5 96.57 78.08 78.24
30| 5 30 3e-2 11 84.62 76.06 75.85
30 | 10 30 3e-2 13 87.25 76.56 76.32
30 | 15 30 3e-2 10 89.38 79.27 79.04
30 | 20 30 3e-2 5 83.91 77.70 77.27
30 | 25 30 3e-2 26 92.65 78.84 78.83
30 | 35 30 3e-2 9 90.78 79.75 79.48
30 | 40 30 3e-2 6 94.37 77.94 78.17
30 | 45 30 3e-2 5 87.55 79.65 79.55

3L

30| 5 30 3e-2 27 80.96 78.09 77.97
30 | 10 30 3e-2 24 81.06 78.45 78.16
30 | 15 30 3e-2 27 82.67 79.52 79.30
30 | 20 30 3e-2 25 83.40 80.08 79.72
30 | 25 30 3e-2 22 81.21 79.14 78.85
30 | 30 30 3e-2

30 | 35 30 3e-2

30 | 40 30 3e-2

30 | 45 30 3e-2

Table 4: single linear layer recursive neuron network

	Introduction
	Approach
	Experiments
	Appendices

