&)

Code generation with LLMs

Generative Al && software engineering:
analysis, learnings, practical insights

Josh Payne

Agenda

e Intro

e Brief history of Al for code generation
e Benchmarking code gen performance
e Applications and agents

e Al x software engineering

Intxo

e I'mJosh &

e Founder of Coframe (Al for Ul optimization + code gen),
prev two other companies (one Al-focused)

e Created GPT-Migrate (LLM-powered codebase migration),
Coffee (LLM-powered Ul code gen)

] gpt-migrate (Public

Easily migrate your codebase from one

o Sta nfo rd a | U m ; | Coframe/coffee (P framework or language to another.

Build and iterate on your U @ Python ﬁ 6.9k ¥ 489

right from your own IDE &
@Python w15k % 67

Brief History

ublic boolean @ (Set<String>
String val

1. s Code (C#): . . . e
pub f f Z”i n: eTe(x t34 idth(string text) { AroMA Code Recommendation with Extra Lines Highlighted

TextBlock t = new TextBlock();
t.Text = text; . .) .
return TextView licenseView = (TextView)

(int)Math.Ceiling(t.ActualWidth); findViewById(R.id.library_license_link);
} SpannableString underlinedLicenselink = new SpannableString(

Descriptions: . A . A ‘ .
a. Get rendered width of string rounded up to getString (R. string. 11brary—llcense—11nk)) y

(String (entr

,/\ "
(entrywequalsIgnoreCase(value))
return true;

the nearest integer underlinedLicenselLink.setSpan(new UnderlineSpan(), O,

b. Compute the actual textwidth inside a underlinedLicenseLink.length(), 0);
textblock licenseView.setText(underlinedLicenseLink);
2. Source Code (CH): licenseView.setOnClickListener(v -> {
vag doput: = Hello™ . FragmentManager fm = getSupportFragmentManager();

var regEx = new Regex("Wor i ~ - - - -

return !regEx.IsMatch(input); LibraryLicenseDialog librarylLicenseDlg = new
Descriptions: . = . o
a. Return if the input doesn’t contain a L1braryL1censeD1alog() 2
particular word in it libraryLicenseDlg.show(fm, "fragment_license"); });
b. Lookup a substring in a string using regex

CodeNN (lyer et al., 2016) Aroma (Luan et al, 2019) Code2Seq (Alon et al., 2019)
Code summarization Code search (early copilot) Better code summarization

contains-. ign
©) g

(Try it! > https://code2seq.org/)
@ @ @ N >

Pre-LLM era: Early applications: “Oh wow, Al can actually write code now": Al x software engineering:
RNNs and search GPT-3, Codex, GitHub Copilot GPT-3.5, GPT-4, OSS LLMs Agents and integrated workflows

https://code2seq.org/

Brief History

& GitHub Copilot
Tunct (

xDirection * xSpeed;
.innerWidth -

The world’s most widely

xDirection = 1;

}

adopted Al developer tool.

.requestAnimationFrame (a
nimate) ;

}

animate();
Get started with Copilot >

xSpeed = 5;

.body.style.overflow =
When the rocket is clicked, temporarily display some
text saying "Firing thrusters!"\

body.style.backg/>xd

Color =

o @ - . e

Pre-LLM era: Early applications: “Oh wow, Al can actually write code now": Al x software engineering:
RNNs and search GPT-3, Codex, GitHub Copilot GPT-3.5, GPT-4, OSS LLMs Agents and integrated workflows

P [mathard LT
® e v ¢ gpt-d-demo fa X » & e
G4

1

s " e - GPT-4 %

o .

The image is funny because it shows a squirrel holding a camera and taking a photo of a nut as if it were a professional photographer. It's SMF
PO voICE CHANNE & a humorous situation because squirrels typically eat nuts, and we don't expect them to use a camera or act like humans.
TTYTTTE G S © Genena (AREAN L

B b s “ b w
.‘.- Write brief HTML/JS to turn this mock-up into a colorful website, where the jokes are replaced by two real jokes.
- A
o o
&
i :
o
C' o
R e
d
.

smEe

@ @ @ @ >
Pre-LLM era: Early applications: “Oh wow, Al can actually write code now": Al x software engineering:
RNNs and search GPT-3, Codex, GitHub Copilot GPT-3.5, GPT-4, OSS LLMs Agents and integrated workflows

Brief History

Still in its infancy!
4 I

% FACTORY 838 Cognition

J CURSOR
- ™
-® replit @
- J
@ @ @ @ >
Pre-LLM era: Early applications: “Oh wow, Al can actually write code now”: Al x software engineering:

RNNs and search GPT-3, Codex, GitHub Copilot GPT-3.5, GPT-4, OSS LLMs Agents and integrated workflows

ACCURACY

Benchmarking code generation

100

75

50

25

code-davinci-002 175B + CodeT
code-davinci=001"175B + MBR-Exec

PaLM/Coder 5408

Apr ‘22

Jul'22

Oct '22

GPT-4 + AgentCoder
GPT-4 (ChatGPT Plus)

GPT-4 (Self-Debugging with_unit-tests™F trace)
code-davinci-002_175B + LEVER

Jan 23 Apr ‘23 Jul '23 Oct '23 Jan 24

Other models Models with highest Accuracy

ol-mini + MapCoder (Hamming.ai)

Apr ‘24 Jul '24 Oct '24

How do we measure this?

BenChmark TaSkS @ Competitions @ Real-world impact

HumanEval (Chen et al., 2021) was for a long time the most widely-recognized
research benchmark for code generation.

def incr_list(l: list):

This paper also introduced Codex, """Return list with elements incremented by 1.
the first major code-specific LLM. E>> i”C’”iliStm’ 2, 31
2,3, 4

HumanEval is 164 handwritten >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
(6, 4, 6, 3, 4, 4, 10, 1, 124]

programming problems, each with i

several unit tests. e e

The prompt provided to the model is shown with a black background, and a successful model-generated
completion is shown in a blue background. To be successful, it must pass the unit tests.

How do we measure this?

@ BenChmark TaSkS @ Competitions @ Real-world impact

There have also been extensions of HumanEval and other datasets:

- MultiPL-E is a dataset for evaluating large language models
for code generation that supports 18 programming
languages. It translates HumanEval problems into other
languages.

- HumanEval-X consists of 820 high-quality human-crafted
data samples, compared with HumanEval's 164.

- MBPP (Mostly Basic Python Problems) is a dataset of 1000
crowd-sourced Python programming problems.

How do we measure this?

BenChmark TaSkS @ Competitions @ Real-world impact

This benchmark is now almost fully saturated: trivial for powerful LLMs such as
Claude 3.5 Sonnet or 01 (and certainly 03).

Saturation will be a key term =
i n 2 O 2 5 3 100 GPT-4 + AgentCoder ol-mini + MapCoder (Hamming.ai)

GPT-4 (ChatGPT Plus)
GPT-4 (Self-Debugging with unit-tests= trace)

75 code-davinci-002 1758 + CodeT code-davinci-002 1758 + LEVER

ACCURACY
a
o
5

Benchmarks are becoming
saturated at an increasing
rate.

Apr '22 Jul 22 Oct 22 Jan'23 Apr ‘23 Jul'23 Oct 23 Jan 24 Apr 24 Jul 24

Other models Models with highest Accuracy

How do we measure this?

@ BenChmark TaSkS @ Competitions @ Real-world impact

Some companies will create internal datasets on which to evaluate.

- Google introduced Gemini alongside a benchmark,
Natural2Code, which is a held-out internal dataset.

GPT-4 (OpenAl) was slightly better on HumanEval (OpenAl), while
Gemini (Google) was slightly better on Natural2Code (Google).

)) o TestGen-LLM
- Meta has internal unit test sets for its internal LLMs. -

G . .
22X RS2

RIS

How do we measure this?

@ BenChmark TaSkS @ Competitions @ Real-world impact

Why are held-out (non-published) benchmarks valuable?

How do we measure this?

BenChmark TaSkS @ Competitions @ Real-world impact

Current (2025) gold standard for industry benchmarks: SWE-Bench Verified

Lite Verified Full Multimodal

Model % Resolved Org Lo, Trajs Site

v

& ¢ W&B Programmer O1 crosscheck5 64.60 E 2025-01-17

o
& & Blackbox Al Agent 62.80 - 2025-01-10 Z
6 ™ CodeStory Midwit Agent + swe-search 62.20 - 2024-12-21 &
& Learn-by-interact 60.20 - 2025-01-10

devlo 58.20

<
£
)

re)

@D
Emergent E1(v2024-12-23) 57.20 2024-12-23
Gru(2024-12-08) 57.00 i+
EPAM Al/Run Developer Agent v20241212 + Anthopic Claude 3.5 Sonnet 55.40 cpam> errErEn
Amazon Q Developer Agent (v20241202-dev) 55.00 aws 2024-12-02

2024-12-08

gS
v
v
v
v
2024-12-13 v
v
v
v
v
v

a2 BN < B < B B IR

devlo 54.20 D 2024-1-08

How do we measure this?

@ Benchmark Tasks Com pet|t|o NS @ Real-world impact

AlphaCode by DeepMind (Li et al., Dec 2022) created CodeContests, a dataset of
compiled competitive programming problems.

. CodeContests
Increasingly, datasets from
- CodeContests is a competitive programming dataset for machine-learning. This dataset was used when trainin
rea I WO r I d ta S kS fo r h u m a n S a re Aipha(.)odte. :\IphaCodephatst beer:l p?:blished?n \:wt“»ﬁ, with a preprint ong&l‘v. et t °
n eed e d a S m O d e | S a p p ro a C h It consists of programming problems, from a variety of sources:
human-level performance. shte R Source
Aizu
Other examples: the LSAT, USMLE, AtCoder
AlphaGeometry (IMO problems) SR
Codeforces

HackerEarth

How do we measure this?

@ Benchmark Tasks Com pet|t|o NS @ Real-world impact

®

RANK

Top 54%
in Codeforces
competitions

ge]
o
=2
o
2]
£
@
)
o
2
a
o
o
2]
©
S
©
(a)

How do we measure this?

@ Benchmark Tasks @ Competitions Real—World ImpaCt

As models begin to surpass human Original AlphaDev
performance, they will be increasingly -
measured on impact.

Example: AlphaDev (Mankowitz and Michi,
June 2023) discovered a faster sorting
algorithm for small lists that has now been
implemented in the C++ standard lib.

SWE KPIs (bug rate, PRs merged, etc) are
starting to become more commonplace.

Left: The original implementation with min(A,B,C).

Right: AlphaDev Swap Move - AlphaDev discovers that you only need min(A,B).

How do we measure this?

@ Benchmark Tasks @ Competitions @ ReaI—World ImpaCt

AGl is going to be increasingly measured by
economic productivity.

When Cognition launched Devin, a key point
was that it was able to solve real challenges
posted to Fiverr / Upwork.

|ﬂs= Devin

This will be a moving, but very reasonable,
goalpost.

Benchmarking code generation
& Eenchmark: HumanEval

Techniques

Fine-tuning /
Instruct-tuning
//// Base models \\\\

Benchmarking code generation
YN

Base Models are the GPTs and Llamas of the world: / Base models N\
not fine-tuned for a particular task.

Open LLMs Closed LLMs
Weights are open, easy to do custom Weights are closed, tuning and
tuning and experimentation experimentation are limited

e Codellama (WizardCoder) e GPT-4

e StarCoder e Gemini Ultra

e Replit-code-v1-3b e Claude 21

e Mixtral-8x7b o Grok

Benchmarking code generation
YN

Base Models are the GPTs and Llamas of the world: Base models

not fine-tuned for a particular task.

Benchmarking code generation
y o N

Instruct-tuned models are models that are / Base models L
fine-tuned with instructions: in this case, for code.

Benchmarking code generation -
D oenchmaric Humantval)

Instruct-tuned models are models that are
fine-tuned with instructions: in this case, for

code.

Instruct-tuning involves a prompt which
contains an instruction, and a response.
Including the instruction is important for the
model to know how to understand new

instructions at inference time.

Example: Synthesis

Model Input

Target Output

Write a Python function “has_close_elements(numbers: List[float],
threshold: float) -> bool" to solve the following problem:
Check if in given list of numbers, are any two numbers closer to

each other than given threshold.

False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:

""" Check if in given list of numbers, are any two numbers closer
to each other than given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

Benchmarking code generation e

Instruct-tuned models are models that are
fine-tuned with instructions: in this case, for
code.

Instruct-tuning involves a prompt which
contains an instruction, and a response.
Including the instruction is important for the
model to know how to understand new
instructions at inference time.

Model Input

Example: Fix a bug Target Output

Fine-tuning /
Instruct-tuning

Base models

from typing import List

def has_close_elements(numbers: List{float], threshold: float) ->
bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = elem - elem2
if distance < threshold:
return True

return False

def check(has_close_elements):

assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) ==
True

assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) ==
False

assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True

assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False

assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) ==
True

assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True

assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False

check(has_close_elements)

Fix bugs in has_close_elements.

[from typing import List

def has_close_elements(numbers: List{float], threshold: float) ->
bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

Benchmarking code generation -

Instruct-tuned models are models that are
fine-tuned with instructions: in this case, for
code.

Instruct-tuning involves a prompt which
contains an instruction, and a response.
Including the instruction is important for the
model to know how to understand new
instructions at inference time.

Model Input

Example: Explain code Target Output

from typing import List

def has_close_elements(numbers: Listfloat], threshold: float) ->
bool:for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

Provide a concise natural language description of the function using
at most 213 characters.

Check if in given list of numbers, are any two numbers closer to
each other than given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

4

Check if in given list of numbers, are any...

Write functional code in Python according to the description.

fromriypmg-mporteist

def has_close_elements(numbers: List[float], threshold: float) ->
bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

Benchmarking code generation o

— ssssssssss

Instruct-tuning is clearly useful. How can we
scale it up?

As LLMs and datasets get larger, we
increasingly need to think creatively about
how to gather data in order to improve.

One example of this is COMMITPACK: 4 terabytes of Git commits across 350
programming languages (Muennighoff et al, Jan 2024; ICLR preprint).

Git commits naturally pair code changes with human instructions.

Benchmarking code generation é@i\

ssssssssss

Instruct-tunin

Technique can make all the difference. This is broadly broken
down into reasoning methods and decision-making methods.

GPT-3.5 (175B parameters)
83.8 | oo ./— Technique: LATS

GPT-4 (1.7T parameters (est)) _ GPT-3.5beats GPT-4
Technique: None with LATS, despite

being 10x smaller!

Benchmarking code generation gﬁg\

Base models

Chain-of-Thought

Chain-of-Thought (CoT) prompts LLMs to
sequentially generate reasoning steps from
input to output. It was first introduced in PaLM:
Scaling Language Modeling with Pathways.
(Chowdhery, Catasta et al., 2022)

However, it suffers from error propagation as
the chain length increases.

Benchmarking code generation gﬁg\

Base models

RL-driven reasoning in token space

OpenAl's o(n) series of models combines RL and
CoT, far exceeding the performance of the base
models. "Bitter lesson” for agent techniques (note:
not necessarily frameworks/workflows)?

Software Engineering Competition Code o1-mini has a

(SWE-bench Verified) (Codeforces)

HumanEval score of
96.2% pass@1. This
benchmark is now
saturated.

Benchmarking code generation

Tree-of-Thoughts

Tree-of-Thoughts (ToT) extends CoT by
exploring multiple reasoning paths
using search algorithms like BFS and
DFS. (Yao et al., May 2023)

That said, it is limited by relying solely
on the LLM's internal knowledge.

Benchmarking code generation gﬁg\

Base models

Reasoning via Planning

Reasoning via Planning (RAP)
(Hao et al., October 2023) uses
Monte Carlo Tree Search for

: : : z
planning chains of reasoning.
However, it also lacks external
feedback. /!

||

|

Benchmarking code generation gﬁg\

Base models

ReAct a»
Observation
il] \
ReAct prompts LLMs with alternating l f ’,'
actions and observations for 1 R

S
decision-making in interactive .

environments. (Yao et al., March 2023) :

However, it greedily follows one

\

!

trajectory and cannot adapt.
/

Benchmarking code generation gﬁg\

Reflexion

Decision-making method » Observation
Reflexion adds self-reflection to ReAct. Reflection
This improves overall performance by

allowing the LLM more time to think
through the problem, similar to CoT.
(Shinn et al., October 2023)

However, it does not consider alternative
options at each step.

Benchmarking code generation éﬁ}

Language Agent Tree Search

LATS unifies the strengths of both
reasoning and decision-making methods
through principled search, while
overcoming limitations via environmental U

feedback and self-reflection. (Zhou et al.,
December 2023)
74
<\= .

Reflection

Observation

LATS Steps

1) Selection

Selection

Select a node to travel to using the
score we'll talk about.

LATS Steps

2) Expansion

Expansion

After selecting a node, the second
operation expands the tree by sampling

n actions from pB, as described in the
prior section.
5

LATS Steps

3) Evaluation

. S
Evaluation

Assigns a scalar value to each new
child node to be used for selection and

backpropagation. This value effectively
guantifies the agent's progress in task

completion, steering the agent towards
the most promising branch.

How is the confidence score
calculated?

e™(In(N(p)/N(s)) =
N(p)"*(1/N(s))
N(s) is the number of visits to a node s, V (s) is the The UCT score determines the next
value function (expected return) from the subtree step of expansion in the tree.
of s, w is the exploration weight, and p is the parent
node of s. Conceptually, if a branch hasn't

been explored very much, it has a
higher chance of exploration if w is
higher.

LATS Steps

4) Simulation

(Input)

.

Simulation

B s

Expands the currently selected node
until a terminal state is E] B
reached. At each depth level we
sample and evaluate nodes with the
same operations, but prioritize
nodes of highest value.

LATS Steps

5) Backpropagation

e .y

< Input /‘

Backpropagation | 0

Updates the values of the tree based
on the outcome of a trajectory. S,

@]EI

|
C_ Output

LATS Steps

6) Reflection

Reflection

\ Output /’

Upon encountering an
unsuccessful terminal node, po is

prompted with the trajectory and final ! LM \
reward to provide a verbal T
self-reflection that summarizes the

errors in the reasoning or acting
process and proposes superior 3

alternatives. B

Applications and agents

.

Applications and agents

Al has tackled every aspect of software engineering.
(List below is not exhaustive.)

:- replit :c f\z‘f Y Mintlify
J CURSOR

®
lovable swirm
4 bloop. . ©® momentic SWVWIIM
l f The Windsurf Editor
bo MECHANICAL ORCHARD

M warp
© GPT-Migrate O Cody by
Project % sourcegraph ~ ISSUES &

creation Migrations IDE tests Docs

Applications and

Deep dive: GPT-Migrate

GPT-Migrate

Python -> JavaScript

~/gpt-migrate/gpt_migrate git:(main)z4

python main.py --source lang python --targetlang nodejs

agents

--sourceport 5000| I

al

>

®

r(gz ooooooo
“WA 5 TIMELINE
X ®@0AO0

https://docs.google.com/file/d/1P2hk6TNPD8zvOAVxow8EvAj3wgI23kdn/preview

Applications and agents
Deep dive: Coffee

Coffee @

oe
e
Coframe Front-End E
D ——— — —
-—- A= 219' i 1208
R
ot e
- -
L
| ORI
:
| . _— S
e A e ST PO A" SO SRR 31 5
i -

Coframe gives you full control and visiity.

Sy e g pt b
o e oo iR R
rnd bk
i ol el

13 el nt-ael i A b
rtegrats withie wiscen

Lo Iogetie, sy v mngeld
AR Vamns e 4ot 10wt v 4 8. Lo o8 s0l.
Catrame gives we full el et sisbitiny.

<30ms $0

Barng fest AP for 8 Smetn UX Cast 1o eagrats

B SV SS—
BACH) M] A U T S) —

A8 -0 OPENAT AP} APLEY) v cottee

Comection arter
wading’ Trom fusr/tecals

digital -
- ol o] it ROt

W/Bythond 1/ thresd \ng. oy >

Loymoardinterript
e fving Tings do. Coframe s Changing ™, leverageng the istest i Al ang LXK to axport SHEMAIAPE, KEVerhe
Brmg user mtactaces to s
anchor ren it -0 v—un. L) v Joent cotfon
_resct_teg
< moe * Lauehing voun Sta
wren rnlnvu
Personatzation Vieus! Elemonts o Poount

Flle cha
Mo fiad: /mewnt/compument s/LanderBudy. 150

Cotrame wi soon support Wmages. atying, leyout, asd ewner

https://docs.google.com/file/d/10aIAQiq5DM6azr4euD5ApfsJaz_OzC8G/preview

AI x Software Engineering

e Using code generation wisely

e Prompt engineering for code gen

e Al-driven development

AI x Software Engineering

Using code generation wisely

% GOAL

\Y WJ__V'__‘

_]

Knowl e_clge_ G;O\PS

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

ChatGPT

&V/l\mi
\ 1

Knowl e_dge_ G)O\PS

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

NS

K now{e,o(ge_ Gain

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

% GOAL

Knowledge Gaps

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

| et \
% el \ GOAL
y 7

Knowledge Gaps

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

P &
= \ GOAL

No/Small Know{e_o(ge_ Goin

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

Why?

e |Learningis important

e Understanding your code is important

e Maintainability and knowledge transfer is important
o Fully LLM-written projects tend to produce

“spaghetti code”. | know first-hand!

AI x Software Engineering

Prompt engineering for code gen

Prompt engineering is likely more important to
code generation than it is to any other area due
to the precision required. Luckily, engineers are
naturally good prompt engineers.

Principled Instructions are All You Need gives 26
general prompting guidelines (see chart).

Worth adding: only add the minimum viable
context; context windows aren't all made equal.

Principled Instructions are All You Need
(Bsharat et al., December 2023)

AI x Software Engineering

Prompt engineering for code gen

AlphaCodium formalized "Flow Engineering” for software

engineering workflows, which many practitioners had been using
already. Using GPT-4 on the CodeContests validation set, the
pass@>5S accuracy improved from 19% with a well-crafted single

prompt to 44% with AlphaCodium.

Input -
Problem
Description +
Public Tests

Problem
Reflection

Pre-processing

Generate
Possible
Solutions

Public Tests
Reasoning

Rank
Solutions

Generate
Additional Al
Tests

Code iterations

Iterate on
Public Tests

Initial Code
Solution

Iterate on Al

Tests

Final
Solution

Code Generation with AlphaCodium: From Prompt Engineering to Flow
Engineering

Tal Ridnik, Dedy Kredo, Itamar Friedman
CodiumAl

Abstract

Code generation problems differ from common natural
language problems - they require matching the exact syn-
tax of the target language, identifying happy paths and
edge cases, paying attention to numerous small details in
the problem spec, and addressing other code-specific is-
sues and requirements. Hence, many of the optimizations
and tricks that have been successful in natural language
generation may not be effective for code tasks. In this
work, we propose a new approach to code generation by
LLMs, which we call AlphaCodium - a test-based, multi-
stage, code-oriented iterative flow, that improves the perfor-
mances of LLMs on code problems. We tested AlphaCodium
on a challenging code generation dataset called CodeCon-
tests, which includes competitive programming problems
from platforms such as Codeforces. The proposed flow con-
sistently and significanly improves results. On the valida-
tion set, for example, GPT-4 accuracy (pass@S5) increased
from 19% with a single well-designed direct prompt to 44%

with the AlphaC odian flow. Many ofthe principles and best
practices acquired in this work, we believe, are broadly ap-
plicable to general code generation tasks

Full implementation is available at.

1. Introduction

With a sparse reward signal, code generation tasks re-
quire searching in the huge structured space of possible pro-
grams. Correct solutions to the same problem can look sig:
nificantly different, and judging if a partial or incorrect so-
lution is useful s a difficult challenge - a single-character
edit can completely alter the solution’s behavior. Due to the
unique nature of code generation tasks, common prompting
techniques that have been optimized for natural language
tasks [1, may not be as effective when applied to
code generation.

Recent large-scale transformer-based language mod-

tamar. £}6

els [1 7] have successfully generated code that solves simple
programming tasks [, ']. However, real-world code prob-
lems are often different in nature - they are more nuanced,
and can be defined by a long natural language task descrip-
tion (i.¢., spec), that contains multiple details and rules that
the solution code must address.

The introduction of CodeContests [1], a dataset curated
from competitive programming platforms such as Code-
forces [*], enabled the evaluation of models and flows on
more challenging code problems, which usually include a
lengthy problem description. A private test set, with more
than 200 unseen tests per problem, enables to evaluate the
generated code comprehensively, and to reduce false posi
tive rates to a minimum.

m pnmm work addressing the CodeContests dataset

Code [1], a code ge n system develoy pmm
Dmp‘\ﬂn\l that utilizes a fine-tuned network specificall
for compettive programming sks. AlphaCode generatcs
a very large number of possible solutions (up to IM), that
are then processed and clustered, and among them a small
number (~ 10) is chosen and submitted. While the results
of AlphaCode are impressive, the need to fine-tune a model
specifically for code-oriented tasks, and the heavy compu-
tational brute-force-like load, makes it impractical for most
real life usages. CodeChain [/] is another work to tackle
competitive programming tasks, which introduced a novel
inference framework to improve code generation in LLMs
through a chain of sub-module-based self-revisions.

In this paper, we present AlphaCodium, a code-oriented
flow that revolves around an iterative process where we re-
peatedly run and fix a generated code against input-output
tests. Two key elements for AlphaCodium flow are (a) gen
erating additional data, such as problem reflection and test
reasoning, to aid the iterative process, and (b) enrichment
of public tests with additional Al-generated tests. The pro-
posed flow, which is depicted in Figure 1, is divided into
two main phases: a pre-processing phase where we reason
about the problem in natural language, and an iterative code
generation phase where we generate, run, and fix a code
solution against public and Al-generated tests.

AlphaCodium

(Ridnik et a

., January 2024)

AI x Software Engineering

Prompt engineering for code gen

Unambiguous

Stoica et al. (Dec 2024) introduced Specifications, formalizing
what many have been incorporating into robust, enterprise-grade
agentic workflows. This approach is highly applicable to software
engineering workflows.

Solve equation
x3—-x=0.

Implement a new feature given a
product requirements document
and test it given a set of unit tests.

Which is the longest river in
the world?

c
kel
=

@S
2
=

[

@

o

(2]

c
=]
S
=

[}
n

Will we have AGI by
20277

(How can one verify the task’s solution?

Core ideas:
.. Ambiguous ificati Unambiguous
- Statement specifications (tasks) and solution specifications ? et s harteek oty ?
(outputs)

https://axrxiv.oxrg/pdf/2412.05299

- This enables Modularity, Reusability, Verifiability, Debuggability,
and Automated decision-making

- Cool idea: when the model identifies certain tasks as
underspecified, it not only asks for clarification, but also provides
recommendations on how to disambiguate the prompt/task

https://arxiv.org/pdf/2412.05299

AI x Software Engineering

Prompt engineering for code gen

Prompt composition can become complex when you're
dealing with code-writing agents performing multiple I Prompt Design
types Of SOftware englneerlng taSkS Subprompts are organized in the following fashion:

* HIERARCHY : this defines the notion of preferences. There are 4 levels of preference, and each level prioritized
more highly than the previous one.
« pi: Preference Level 1. These are the most general prompts, and consist of broad guidelines.

O n e S O | Uti O n iS O rg a n i Zi n g th e m I nto a h ie ra rC h y a n d « p2: Preference Level 2. These are more specific prompts, and consist of guidelines for certain types of

actions (e.g., best practices and philosophies for writing code).

C re atl n g a C O n St r u Cto r th at C a n C O m p O S e th e S e p ro m ptS » p3: Preference Level 3. These are even more specific prompts, and consist of directions for specific actions

(e.g., creating a certain file, debugging, writing tests).

to g e't h e r’ a | O n g W |t h a n y Va rl a b | e S yo u n e e d ‘to p a S S I n « pa: Preference Level 4. These are the most specific prompts, and consist of formatting for output.

Prompts are a combination of subprompts. This concept of tagging and composability can be extended to other
fro m yo u r C O d e . properties as well to make prompts even more robust. This is an area we're highly interested in actively exploring.

In this repo, the prompt_constructor() function takes in one or more subprompts and yields a string which may
be formatted with variables, for example with GUIDELINES beinga pl, WRITE_CODE beinga p2 etc:

Mm%}&uﬁmg%e&% prompt = prompt_constructor(HIERARCHY, GUIDELINES, WRITE_CODE, DEBUG_TESTFILE, SINGLEFILE).for LD
. 9) o i) "
be-headlesspromptOMS'satsemepoirt Prompt hierarchy in GPT-Migrate

braintrust [WIEENERGeY Q& Adaline

AI x Software Engineering

Prompt engineering for code gen

You are an expert teacher on the provided topic.

SUdOIang IS a natural |anguage Constralnt_based Your task 1is to teach the chat user about the topic.
programm|ng pSGudOlanguage, Wlth an I_I_M as the Pvfes’ent the chat user with opportunities to practice the topic,
interpreter. What? '

Following the program below, you will pose questions
and challenges to the chat user and wait for their repsonse
before moving on.

More simply, it combines natural language elements and Be) o ke i ncaiirag .
simple coding conventions for better prompting.

n topicList {

SudolLang prompts can often be written with 20% - 30% c: stopien;

Questions(topic);

fewer tokens than natural language. bt e

while (correctAnswers < questions.length) {
for each estion {

The expressiveness and precision helps when writing Lo (question); (
. " userAnswer getInput("Your answer: ");
code, as well as when “programming” the LLM to serve o
aS an appllcation |tse|f. explain(" b $explanation") : length=compact;

correctAn
log("$correctAnswers Squestions.length");

} else {

AI x Software Engineering

Al-driven development: practical pointers

Language preference

LLMs do better with more
popular languages. They
also benefit from the
clarity of typed
languages.

Logs-in-the-loop

When debugging (or in a
background loop), LLMs
can digest logs and
error traces. Very
helpful!

Project structure

Try to keep files and
modular. Use headers and
TDDs to help the LLM
navigate and generate
files.

Tests, tests, tests

When generating entire
functions and files, test
coverage is CRUCIAL.
(LLMs can write these
too!)

Interface-oriented programming

LLMs need context.
Interfaces (input,
output, transformation,
types) give this. Use
IOP in prompts.

Output structure

YAML uses as little as
50% of the tokens that
JSON output does. Even
with JSON mode, YAML
wins.

Questions

josh@coframe.com

