&

Code generation with LLMs

Generative Al && software engineering:
analysis, learnings, practical insights

Josh Payne

Agenda

e Intro

e Brief history of Al for code generation
e Benchmarking code gen performance
e Applications and agents

e Al x software engineering

Intxo

e & I'm Josh

e Founder of Coframe (Al for Ul optimization + code gen),
prev two other companies (one Al-focused)

e Created GPT-Migrate (LLM-powered codebase migration),
Coffee (LLM-powered Ul code gen)

£l gpt-migrate (Public

Easily migrate your codebase from one framework or

e Stanford CS (Al) alum! e

£l Coframe/coffee (Public ®bython Tresk % 604

Build and iterate on your Ul 10x f:
from your own IDE @&

@ Python W13k % 57

Brief History

ublic boolean @ (Set<String>
String val

1.8 Code (C#): . . . e
pub f f Z”i n: eTe(x t34 idth(string text) { AroMA Code Recommendation with Extra Lines Highlighted

TextBlock t = new TextBlock();
t.Text = text; . .) .
return TextView licenseView = (TextView)

(int)Math.Ceiling(t.ActualWidth); findViewById(R.id.library_license_link);
} SpannableString underlinedLicenselink = new SpannableString(

Descriptions: . A . A ‘ .
a. Get rendered width of string rounded up to getString (R. string. 11brary—llcense—11nk)) y

(String (entr

,/\ "
(entrywequalsIgnoreCase(value))
return true;

the nearest integer underlinedLicenselLink.setSpan(new UnderlineSpan(), 0,

b. Compute the actual textwidth inside a underlinedLicenseLink.length(), 0);
textblock licenseView.setText(underlinedLicenseLink);
2. Source Code (CH): licenseView.setOnClickListener(v -> {
vag doput: = Hello™ . FragmentManager fm = getSupportFragmentManager();

var regEx = new Regex("Wor i ~ - - - -

return !regEx.IsMatch(input); LibraryLicenseDialog librarylLicenseDlg = new
Descriptions: . = . o
a. Return if the input doesn’t contain a L1braryL1censeD1alog() 2
particular word in it libraryLicenseDlg.show(fm, "fragment_license"); });
b. Lookup a substring in a string using regex

CodeNN (lyer et al., 2016) Aroma (Luan et al, 2019) Code2Seq (Alon et al., 2019)
Code summarization Code search (early copilot) Better code summarization

(Try it! = https://code2seq.ord/)
® @ @ N o

Pre-LLM era: Early applications: “Oh wow, Al can actually write code now”: Al x software engineering:
RNNs and search GPT-3, Codex, GitHub Copilot GPT-3.5, GPT-4, OSS LLMs Agents and integrated workflows

https://code2seq.org/

Brief History

& GitHub Copilot
Tunct (

xDirection * xSpeed;
.innerWidth -

The world’s most widely

xDirection = 1;

}

adopted Al developer tool.

.requestAnimationFrame (a
nimate) ;

}

animate();
Get started with Copilot >

xSpeed = 5;

.body.style.overflow =
When the rocket is clicked, temporarily display some
text saying "Firing thrusters!"\

body.style.backg/>xd

Color =

o @ - . e

Pre-LLM era: Early applications: “Oh wow, Al can actually write code now”: Al x software engineering:
RNNs and search GPT-3, Codex, GitHub Copilot GPT-3.5, GPT-4, OSS LLMs Agents and integrated workflows

P [mathard LT
® e v ¢ gpt-d-demo fa X » & e
G4

1

s " e - GPT-4 %

o .

The image is funny because it shows a squirrel holding a camera and taking a photo of a nut as if it were a professional photographer. It's SMF
PO voICE CHANNE & a humorous situation because squirrels typically eat nuts, and we don't expect them to use a camera or act like humans.
TTYTTTE G S © Genena S sle il

B b s " b w
.‘.- Write brief HTML/JS to turn this mock-up into a colorful website, where the jokes are replaced by two real jokes.
- A
o o
&
i :
o
C' A
@ e
d
.

smEe

® @ @ @ >
Pre-LLM era: Early applications: “Oh wow, Al can actually write code now”: Al x software engineering:
RNNs and search GPT-3, Codex, GitHub Copilot GPT-3.5, GPT-4, OSS LLMs Agents and integrated workflows

Brief History

Still in its infancy!

gptengineer

Auto <4 Cursor
°9P © GPT-Migrate O

® @ @ @ >

Pre-LLM era: Early applications: “Oh wow, Al can actually write code now”: Al x software engineering:
RNNs and search GPT-3, Codex, GitHub Copilot GPT-3.5, GPT-4, 0SS LLMs Agents and integrated workflows

PASS@1

Benchmarking code generation

Language Agent Tree Search (GPT-4): 94.400
100

Reflexion (GPT-4)
Parsel (GPT-4 + CodeT)

75 CODE-T (code-davinci=002)

50

Codex-12B
25

-25
May 21 Sep 21 Jan '22 May ‘22 Sep 22 Jan '23 May ‘23 Sep '23 Jan 24

How do we measure this?

BenChmark TaSkS @ Competitions @ Real-world impact

HumanEval (Chen et al., 2021) is the most widely-recognized research
benchmark for code generation.

def incr_list(l: list):

This paper also introduced Codex, """Return list with elements incremented by 1.
the first major code-specific LLM. E>> i”C’”iliStm , 2, 3D
2,3, 4

HumanEval is 164 handwritten >>> incr_list([5, 3, 5, 2, 3, 3, 9, @, 123])
(6, 4, 6, 3, 4, 4, 10, 1, 124]

programming problems, each with i

several unit tests. e e

The prompt provided to the model is shown with a black background, and a successful model-generated
completion is shown in a blue background. To be successful, it must pass the unit tests.

How do we measure this?

@ BenChmark TaSkS @ Competitions @ Real-world impact

There have also been extensions of HumanEval and other datasets:

- MultiPL-E is a dataset for evaluating large language models
for code generation that supports 18 programming
languages. It translates HumanEval problems into other
languages.

- HumanEval-X consists of 820 high-quality human-crafted
data samples, compared with HumanEval's 164.

- MBPP (Mostly Basic Python Problems) is a dataset of 1000
crowd-sourced Python programming problems.

How do we measure this?

@ BenChmark TaSkS @ Competitions @ Real-world impact

Some companies will create internal datasets on which to evaluate.

- Google introduced Gemini alongside a new benchmark,
Natural2Code, which is a held-out internal dataset.

GPT-4 (OpenAl) was slightly better on HumanEval (OpenAl), while
Gemini (Google) was slightly better on Natural2Code (Google).

)) . TestGen-LLM
- Meta has internal unit test sets for its internal LLMs. -

G . .
2ZRX RS2

RIS

How do we measure this?

@ BenChmark TaSkS @ Competitions @ Real-world impact

Why are held-out (non-published) benchmarks valuable?

How do we measure this?

@ Benchmark Tasks

Competltlons @ Real-world impact

AlphaCode by DeepMind (Li et al., Dec 2022) created CodeContests, a dataset of
compiled competitive programming problems.

Increasingly, datasets from
real-world tasks for humans are
needed as models approach
human-level performance.

Other examples: the LSAT, USMLE,
AlphaGeometry (IMO problems)

CodeContests

CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training
AlphaCode. AlphaCode has been published in Science, with a preprint on arXiv.

It consists of programming problems, from a variety of sources:

Site URL Source
Aizu https://judge.u-aizu.ac.jp CodeNet
AtCoder https://atcoder.jp CodeNet
CodeChef https://www.codechef.com description2code
Codeforces https://codeforces.com description2code and Codeforces

HackerEarth https://www.hackerearth.com description2code

How do we measure this?

@ Benchmark Tasks Compet|t|ons @ Real-world impact

®

RANK

Top 54%
in Codeforces
competitions

ge]
o
=2
e}
2]
£
@
)
o
2
a
o
o
2]
©
S
©
(a)

How do we measure this?

@ Benchmark Tasks @ Competitions ReaI—World ImpaCt

As models begin to surpass human Original AlphaDev
performance, they will be increasingly -
measured on impact.

Example: AlphaDev (Mankowitz and Michi,
June 2023) discovered a faster sorting
algorithm for small lists that has now been
implemented in the C++ standard lib.

SWE KPIs (bug rate, PRs merged, etc) are
starting to become more commonplace.

Left: The original implementation with min(A,B,C).

Right: AlphaDev Swap Move - AlphaDev discovers that you only need min(A,B).

Benchmarking code generation
& Eenchmark: HumanEval

Techniques

Fine-tuning /
Instruct-tuning
//// Base models \\\\

Benchmarking code generation
YN

Base Models are the GPTs and Llamas of the world: / Base models N\
not fine-tuned for a particular task.

Open LLMs Closed LLMs
Weights are open, easy to do custom Weights are closed, tuning and
tuning and experimentation experimentation are limited

e Codellama (WizardCoder) e GPT-4

e StarCoder e Gemini Ultra

e Replit-code-v1-3b e Claude 21

e Mixtral-8x7b e Grok

Benchmarking code generation
e

Base Models are the GPTs and Llamas of the world:
not fine-tuned for a particular task.

PASS@1 (greedy decoding)

Benchmarking code generation
e

Instruct-tuned models are models that are
fine-tuned with instructions: in this case, for code.

@ instructed

PASS@1 (greedy decoding)

BeepSeek-Coder-33B-instruet --------------------- 793
lama-34B-v2.0

DeepSeek-Coder-1.3B-instruct
60 @
,,, @ WizardCoder-15B-\1.0 . 555
e

dolphin-2.6-mixtral-8x7b

SOLAR-10.7B-Instruct-v1.0
®

Benchmarking code generation -
D oencimeric HumarcL)

Instruct-tuned models are models that are
fine-tuned with instructions: in this case, for

code.

Instruct-tuning involves a prompt which
contains an instruction, and a response.
Including the instruction is important for the
model to know how to understand new

instructions at inference time.

Example: Synthesis

Model Input

Target Output

Write a Python function “has_close_elements(numbers: List[float],
threshold: float) -> bool" to solve the following problem:
Check if in given list of numbers, are any two numbers closer to

each other than given threshold.

False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:

""" Check if in given list of numbers, are any two numbers closer
to each other than given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

Benchmarking code generation -

Instruct-tuned models are models that are
fine-tuned with instructions: in this case, for
code.

Instruct-tuning involves a prompt which
contains an instruction, and a response.
Including the instruction is important for the
model to know how to understand new
instructions at inference time.

Model Input

Example: Fix a bug Target Output

from typing import List

def has_close_elements(numbers: List{float], threshold: float) ->
bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = elem - elem2
if distance < threshold:
return True

return False

def check(has_close_elements):

assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) ==
True

assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) ==
False

assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True

assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False

assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) ==
True

assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True

assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False

check(has_close elements)

Fix bugs in has_close_elements.

[from typing import List

def has_close_elements(numbers: List{float], threshold: float) ->
bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

Benchmarking code generation -

Instruct-tuned models are models that are
fine-tuned with instructions: in this case, for
code.

Instruct-tuning involves a prompt which
contains an instruction, and a response.
Including the instruction is important for the
model to know how to understand new
instructions at inference time.

Model Input

Example: Explain code Target Output

from typing import List

def has_close_elements(numbers: Listfloat], threshold: float) ->
bool:for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

Provide a concise natural language description of the function using
at most 213 characters.

Check if in given list of numbers, are any two numbers closer to
each other than given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

\ 4

Check if in given list of numbers, are any...

Write functional code in Python according to the description.

fromriypimg-mportist

def has_close_elements(numbers: List[float], threshold: float) ->
bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

Benchmarking code generation
y o N

Instruct-tuning is clearly useful. How can we / Base models N\

scale it up?

As LLMs and datasets get larger, we
increasingly need to think creatively about
how to gather data in order to improve.

One example of this is COMMITPACK: 4 terabytes of Git commits across 350
programming languages (Muennighoff et al, Jan 2024; ICLR preprint).

Git commits naturally pair code changes with human instructions.

Benchmarking code generation
YN

Technique can make all the difference. This is broadly broken / Bace models N\
down into reasoning methods and decision-making methods.
GPT-3.5 (175B parameters)
83.8 | oo ./— Technique: LATS

GPT-4 (1.7T parameters (est)) GPT-3.5 beats GPT-4
Technique: None ~ with LATS, despite

being 10x smaller!

Benchmarking code generation AN

Fine-tuning /
Instruct-tuning

Chain-of-Thought

Chain-of-Thought (CoT) prompts LLMs to
sequentially generate reasoning steps from
input to output. It was first introduced in PaLM:
Scaling Language Modeling with Pathways.
(Chowdhery, Catasta et al., 2022)

However, it suffers from error propagation as
the chain length increases.

Benchmarking code generation
& Eenchmark: HumanEval

Tree-of-Thoughts

Tree-of-Thoughts (ToT) extends CoT by
exploring multiple reasoning paths using
search algorithms like BFS and DFS.
(Yao et al., May 2023)

That said, it is limited by relying solely
on the LLM's internal knowledge.

Benchmarking code generation AN

Fine-tuning /
Instruct-tuning

Reasoning via Planning

Reasoning via Planning (RAP)
(Hao et al., October 2023) uses 7
Monte Carlo Tree Search for 52 S92
planning chains of reasoning.
/4

| |

However, it also lacks external
feedback. S3 S3

Benchmarking code generation gﬁg\

Base models

@ Observation

ReAct f, -
[

Decision-making method l
1

ReAct prompts LLMs with alternating

actions and observations for I
decision-making in interactive so %
environments. (Yao et al., March 2023)

)
However, it greedily follows one e

trajectory and cannot adapt.

Benchmarking code generation AN

Fine-tuning /
Instruct-tuning

Reflexion

@ Observation
Reflection

Decision-making method

Reflexion adds self-reflection to ReAct.
This improves overall performance by
allowing the LLM more time to think
through the problem, similar to CoT.
(Shinn et al., October 2023)

However, it does not consider alternative
options at each step.

Benchmarking code generation 4=

(€ Benchmark HumanEval]
Language Agent Tree Search

Decision-making method Reasoning Method)

LATS unifies the strengths of both

g .
Observation

reasoning and decision-making methods N 220 PN O e
through principled search, while 52 S92

overcoming limitations via environmental

feedback and self-reflection. (Zhou et al., o Vs _

December 2023)

- (N Y
]
GPT-4 + LATS is the current best |t l

performer on the HumanEval
benchmark, with a score of 94.4. m @

Applications and agents

.

Applications and agents

Al has tackled every aspect of software engineering.
(Category list below not exhaustive.)

o= replit
gptengineer

Coffee by

) coframe

Project
creation

Applications and agents

Al has tackled every aspect of software engineering.
(Category list below not exhaustive.)

_= replit @@SECOND

gptengineer © GPT-Migrate @

Coffee by

) coframe / C .

Project
creation Migrations

Applications and agents

Al has tackled every aspect of software engineering.
(Category list below not exhaustive.)

o= replit @@SECOND ,@g,

© GPT-Migrate O 4 Cursor

gptengineer

Coffee by /C L warp
) coframe . Cody by

PrOjeC t < Sourcegraph

creation Migrations IDE

Applications and agents

Al has tackled every aspect of software engineering.
(Category list below not exhaustive.)

o= replit @@SECOND fﬁ*

gptengineer ¢ CPT-Migrate @ 4 Cursor

Sweep Al
Coffee by /C " Wdrp acodium’
) coframe . Cody by
Project * Sourcegraph S sues &

creation Migrations IDE tests

Applications and agents

Al has tackled every aspect of software engineering.
(Category list below not exhaustive.)

_= replit @@SECOND fb?

© GPT-Migrate O 4 Cursor

gptengineer g Sweep Al Y Mintlify

Coffee by / Awarp! O cocity
(@) coframe C. Cody by a@coaium

Project * Sourcegraph S sues &

creation Migrations IDE tests Docs

Applications and

Deep dive: GPT-Migrate

GPT-Migrate

Python -> JavaScript

~/gpt-migrate/gpt_migrate git:(main)z4

python main.py --source lang python --targetlang nodejs

agents

--sourceport 5000| I

al

>

®

r(gz ooooooo
“WA 5 TIMELINE
X ®@0AO0

https://docs.google.com/file/d/1P2hk6TNPD8zvOAVxow8EvAj3wgI23kdn/preview

Applications and agents
Deep dive: Coffee

Coffee @

oe
e
Coframe Front-End E
D ——— — —
-—- A= 219' i 1208
R
ot e
- -
L
| ORI
:
| . _— S
e R e Chmm e e ST PO A" SOE, SRR 31 %
i -

Coframe gives you full control and visiity.

O St e g pt b
o e A it e oS ey
rnd ded i
i ol el

13 el nt-ael it A b
rtegrats withie wicen

Lo Iogetie, sy v mngeld
AR Vanns e 4ot 10wt v 4 8. L o8 10l
Catrame gives we full mtrel et sisbiLiy.

<30ms $0

Barng fest AP for 8 Sty UX Cast 1o eagrats

B SV SS—
BACH) M) A U e S) —

A8 -0 OPENAT AP) APLEY) v cottee

Comection arter
wading’ Trom fusr/tecals

digital -
- ol o] it ROt

W/Eythond 1/ thresd \ng. oy >

Leymoardinterript
e fving Tings do. Coframe 18 Changing 1, leverageng the istest i Al ang LXK to axport SHEMAIAPE, KEVexhe
Brmg user mtactacen to s
anchor ren it -0 v—un. L) v Joent cotfon
_resct_teg
< moe * Lauehing voun Sta
wren rnlnvu
Personatzation Vieus! Elemonts o Fmount

Flle cha
Mo fiad: /mewnt/compument s/LanderBudy. 15a

Cotrame wil soon supoort "mages. atying, leyout, asd ewner

https://docs.google.com/file/d/10aIAQiq5DM6azr4euD5ApfsJaz_OzC8G/preview

AI x Software Engineering

e Using code generation wisely

e Prompt engineering for code gen

e Al-driven development

AI x Software Engineering

Using code generation wisely

% GOAL

\Y WJ__V'__‘

_]

Knowl e_clge_ G;O\PS

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

ChatGPT

&V/l\mi
\ 1

Knowl e_dge_ G)O\PS

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

NS

K now{e,o(ge_ Gain

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

% GOAL

Knowledge Gaps

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

| bt \
% el \ GOAL
y 7

Knowledge Gaps

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

P &
= \ GOAL

No/Small Know{e_o(ge_ Goin

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY

AI x Software Engineering

Using code generation wisely

Why?

e [earning is important

e Understanding your code is important

e Maintainability and knowledge transfer is important
o Fully LLM-written projects tend to produce

“spaghetti code”. | know first-hand!

AI x Software Engineering

Prompt engineering for code gen

Prompt engineering is likely more important to
code generation than it is to any other area due
to the precision required. Luckily, engineers are
naturally good prompt engineers.

Principled Instructions are All You Need gives 26
general prompting guidelines (see chart).

Worth adding: only add the minimum viable
context; context windows aren't all made equal.

Principled Instructions are All You Need
(Bsharat et al., December 2023)

AI x Software Engineering

Prompt engineering for code gen

AlphaCodium formalized “Flow Engineering” for software

engineering workflows, which many practitioners had been using
already. Using GPT-4 on the CodeContests validation set, the
pass@5 accuracy improved from 19% with a well-crafted single

prompt to 44% with AlphaCodium.

Input -
Problem
Description +
Public Tests

Problem
Reflection

Pre-processing

Generate
Possible
Solutions

Public Tests
Reasoning

Rank
Solutions

Generate
Additional Al
Tests

Code iterations

Iterate on
Public Tests

Initial Code
Solution

Iterate on Al

Tests

Final
Solution

Code Generation with AlphaCodium: From Prompt Engineering to Flow
Engineering

Tal Ridnik, Dedy Kredo, Itamar Friedman
CodiumAl

Abstract

Code generation problems differ from common natural
language problems - they require matching the exact syn-
tax of the target language, identifying happy paths and
edge cases, paying attention to numerous small details in
the problem spec, and addressing other code-specific is-
sues and requirements. Hence, many of the optimizations
and tricks that have been successful in natural language
generation may not be effective for code tasks. In this
work, we propose a new approach to code generation by
LLMs, which we call AlphaCodium - a test-based, multi-
stage, code-oriented iterative flow, that improves the perfor-
‘mances of LLMs on code problems. We tested AlphaCodium
on a challenging code generation dataset called CodeCon-
tests, which includes competitive programming problems
from platforms such as Codeforces. The proposed flow con-
sistently and significanly improves results. On the valida-
tion set, for example, GPT-4 accuracy (pass@S5) increased
from 19% with a single well-designed direct prompt to 44%

with the AlphaC odian flow. Many ofthe principles and best
practices acquired in this work, we believe, are broadly ap-
plicable to general code generation tasks

Full implementation is available at.

1. Introduction

With a sparse reward signal, code generation tasks re-
quire searching in the huge structured space of possible pro-
grams. Correct solutions to the same problem can look sig:
nificantly different, and judging if a partial or incorrect so-
lution is useful s a difficult challenge - a single-character
edit can completely alter the solution’s behavior. Due to the
unique nature of code generation tasks, common prompting
techniques that have been optimized for natural language
tasks [1, may not be as effective when applied to
code generation.

Recent large-scale transformer-based language mod-

tamar. £}

els [1 7] have successfully generated code that solves simple
programming tasks [, ']. However, real-world code prob-
lems are often different in nature - they are more nuanced,
and can be defined by a long natural language task descrip-
tion (i.¢., spec), that contains multiple details and rules that
the solution code must address.

The introduction of CodeContests [1], a dataset curated
from competitive programming platforms such as Code-
forces [*], enabled the evaluation of models and flows on
more challenging code problems, which usually include a
lengthy problem description. A private test set, with more
than 200 unseen tests per problem, enables to evaluate the
generated code comprehensively, and to reduce false posi
tive rates to a minimum.

m pnmm work addressing the CodeContests dataset

Code [1], a code ge n system develoy pmm
Dmp‘\ﬂn\l that utilizes a fine-tuned network specificall
for compettive programiming sks. AlphaCode generatcs
a very large number of possible solutions (up to IM), that
are then processed and clustered, and among them a small
number (~ 10) is chosen and submitted. While the results
of AlphaCode are impressive, the need to fine-tune a model
specifically for code-oriented tasks, and the heavy compu-
tational brute-force-like load, makes it impractical for most
real life usages. CodeChain [/] is another work to tackle
competitive programming tasks, which introduced a novel
inference framework to improve code generation in LLMs
through a chain of sub-module-based self-revisions.

In this paper, we present AlphaCodium, a code-oriented
flow that revolves around an iterative process where we re-
peatedly run and fix a generated code against input-output
tests. Two key elements for AlphaCodium flow are (a) gen
erating additional data, such as problem reflection and test
reasoning, to aid the iterative process, and (b) enrichment
of public tests with additional Al-generated tests. The pro-
posed flow, which is depicted in Figure 1, is divided into
two main phases: a pre-processing phase where we reason
about the problem in natural language, and an iterative code
generation phase where we generate, run, and fix a code
solution against public and Al-generated tests.

AlphaCodium
(Ridnik et al., January 2024)

AI x Software Engineering

Prompt engineering for code gen

Prompt composition can become complex when you're
dealing with code-writing agents performing multiple I Prompt Design
typeS Of SOftware englneerlng taSkS Subprompts are organized in the following fashion:

* HIERARCHY : this defines the notion of preferences. There are 4 levels of preference, and each level prioritized
more highly than the previous one.
« pi: Preference Level 1. These are the most general prompts, and consist of broad guidelines.

O n e S O | U t i O n iS O rg a n iZ i n g t h e m i n tO a h i e ra rC h y a n d « p2: Preference Level 2. These are more specific prompts, and consist of guidelines for certain types of

actions (e.g., best practices and philosophies for writing code).

C re a t I n g a C O n St rU CtO r t h a t C a n C O m p O S e t h e S e p rO m pts + p3: Preference Level 3. These are even more specific prompts, and consist of directions for specific actions

(e.g., creating a certain file, debugging, writing tests).

to g et h e r, a | O n g W |'t h a n y Va rl a b | e S yo u n e e d ‘to p a S S I n « pa: Preference Level 4. These are the most specific prompts, and consist of formatting for output.

Prompts are a combination of subprompts. This concept of tagging and composability can be extended to other
fro m yo u r C O d e . properties as well to make prompts even more robust. This is an area we're highly interested in actively exploring.

In this repo, the prompt_constructor() function takes in one or more subprompts and yields a string which may
be formatted with variables, for example with GUIDELINES beinga pl, WRITE_CODE beinga p2 etc:

The Simplest Way to do this iS using text files in |abe|ed prompt = prompt_constructor(HIERARCHY, GUIDELINES, WRITE_CODE, DEBUG_TESTFILE, SINGLEFILE).for LD
directories in your /prompts/ directory. I'm sure there will
be headless prompt CMS’s at some point. Prompt hierarchy in GPT-Migrate

AI x Software Engineering

Teach

Prompt engineering for code gen

You are an expert teacher on the provided topic.
SUdOIang IS a natural |anguage ConStramt‘based Your task 1is to teach the chat user about the topic.
programmlng pseUdO|anguage, W|th an I_I_M as the Pvfes’ent the chat user with opportunities to practice the topic,
interpreter. What? '

Following the program below, you will pose questions
and challenges to the chat user and wait for their repsonse

before moving on.

More simply, it combines natural language elements and Be) o ke i ncaiirag .
simple coding conventions for better prompting. |

n topicList {

Sudolang prompts can often be written with 20% - 30% c: stopien;

Questions(topic);

fewer tokens than natural language. bt e

while (correctAnswers < questions.length)

for each estion

The expressiveness and precision helps when writing log (question); (
. ” userAnswer getInput("Your answer: ");
code, as well as when “programming” the LLM to serve e
as an application itself. rician e enereomecy

log("S$correctAnswers Squestions.length");

else {

AI x Software Engineering

Al-driven development: practical pointers

AI x Software Engineering

Al-driven development: practical pointers

Language preference

LLMs do better with more
popular languages. They
also benefit from the
clarity of typed
languages.

AI x Software Engineering

Al-driven development: practical pointers

Language preference

LLMs do better with more
popular languages. They
also benefit from the
clarity of typed
languages.

Project structure

Try to keep files and
modular. Use headers and
TDDs to help the LLM
navigate and generate
files.

AI x Software Engineering

Al-driven development: practical pointers

Language preference

LLMs do better with more
popular languages. They
also benefit from the
clarity of typed
languages.

Project structure

Try to keep files and
modular. Use headers and
TDDs to help the LLM
navigate and generate
files.

Interface-oriented programming

LLMs need context.
Interfaces (input,
output, transformation,
types) give this. Use
IOP in prompts.

AI x Software Engineering

Al-driven development: practical pointers

Language preference

LLMs do better with more
popular languages. They
also benefit from the
clarity of typed
languages.

Logs-in-the-loop

When debugging (or in a
background loop), LLMs
can digest logs and
error traces. Very
helpful!

Project structure

Try to keep files and
modular. Use headers and
TDDs to help the LLM
navigate and generate
files.

Interface-oriented programming

LLMs need context.
Interfaces (input,
output, transformation,
types) give this. Use
IOP in prompts.

AI x Software Engineering

Al-driven development: practical pointers

Language preference

LLMs do better with more
popular languages. They
also benefit from the
clarity of typed
languages.

Logs-in-the-loop

When debugging (or in a
background loop), LLMs
can digest logs and
error traces. Very
helpful!

Project structure

Try to keep files and
modular. Use headers and
TDDs to help the LLM
navigate and generate
files.

Tests, tests, tests

When generating entire
functions and files, test
coverage is CRUCIAL.
(LLMs can write these
too!)

Interface-oriented programming

LLMs need context.
Interfaces (input,
output, transformation,
types) give this. Use
IOP in prompts.

AI x Software Engineering

Al-driven development: practical pointers

Language preference

LLMs do better with more
popular languages. They
also benefit from the
clarity of typed
languages.

Logs-in-the-loop

When debugging (or in a
background loop), LLMs
can digest logs and
error traces. Very
helpful!

Project structure

Try to keep files and
modular. Use headers and
TDDs to help the LLM
navigate and generate
files.

Tests, tests, tests

When generating entire
functions and files, test
coverage is CRUCIAL.
(LLMs can write these
too!)

Interface-oriented programming

LLMs need context.
Interfaces (input,
output, transformation,
types) give this. Use
IOP in prompts.

Output structure

YAML uses as little as
50% of the tokens that
JSON output does. Even
with JSON mode, YAML
wins.

Acknowledgements

e Michele Catasta

e Pavlo Razumovskyi
e Glavin Wiechert

e Tinah Hong

e Alex Korshuk

e John Whaley

Thank you!

Questions

josh@coframe.ai

