
Code generation with LLMs
Generative AI && software engineering: 

analysis, learnings, practical insights 

Josh Payne



Agenda
● Intro

● Brief history of AI for code generation

● Benchmarking code gen performance

● Applications and agents

● AI x software engineering



Intro
● 👋 I’m Josh

● Founder of Coframe (AI for UI optimization + code gen), 
prev two other companies (one AI-focused)

● Created GPT-Migrate (LLM-powered codebase migration), 
Coffee (LLM-powered UI code gen)

● Stanford CS (AI) alum!



Brief History

Pre-LLM era: 
RNNs and search

Early applications:
GPT-3, Codex, GitHub Copilot

“Oh wow, AI can actually write code now”:
GPT-3.5, GPT-4, OSS LLMs

AI x software engineering:
Agents and integrated workflows

Code search (early copilot)
Code2Seq (Alon et al., 2019)CodeNN (Iyer et al., 2016)

(Try it! -> https://code2seq.org/ )

Aroma (Luan et al, 2019)

Better code summarizationCode summarization

https://code2seq.org/


Brief History

Pre-LLM era: 
RNNs and search

Early applications:
GPT-3, Codex, GitHub Copilot

“Oh wow, AI can actually write code now”:
GPT-3.5, GPT-4, OSS LLMs

AI x software engineering:
Agents and integrated workflows



Brief History

Pre-LLM era: 
RNNs and search

Early applications:
GPT-3, Codex, GitHub Copilot

“Oh wow, AI can actually write code now”:
GPT-3.5, GPT-4, OSS LLMs

AI x software engineering:
Agents and integrated workflows



Brief History

Pre-LLM era: 
RNNs and search

Early applications:
GPT-3, Codex, GitHub Copilot

“Oh wow, AI can actually write code now”:
GPT-3.5, GPT-4, OSS LLMs

AI x software engineering:
Agents and integrated workflows

Still in its infancy!



Benchmarking code generation



How do we measure this?

1 2Benchmark Tasks Competitions Real-world impact3

The prompt provided to the model is shown with a black background, and a successful model-generated 
completion is shown in a blue background. To be successful, it must pass the unit tests.

HumanEval (Chen et al., 2021) is the most widely-recognized research 
benchmark for code generation.

This paper also introduced Codex, 
the first major code-specific LLM.

HumanEval is 164 handwritten 
programming problems, each with 
several unit tests.



How do we measure this?

1 Benchmark Tasks

There have also been extensions of HumanEval and other datasets:

- MultiPL-E is a dataset for evaluating large language models 
for code generation that supports 18 programming 
languages. It translates HumanEval problems into other 
languages.

- HumanEval-X consists of 820 high-quality human-crafted 
data samples, compared with HumanEval’s 164.

- MBPP (Mostly Basic Python Problems) is a dataset of 1000 
crowd-sourced Python programming problems.

2 Competitions Real-world impact3



How do we measure this?

1 Benchmark Tasks

Some companies will create internal datasets on which to evaluate. 

TestGen-LLM

- Google introduced Gemini alongside a new benchmark, 
Natural2Code, which is a held-out internal dataset. 

GPT-4 (OpenAI) was slightly better on HumanEval (OpenAI), while 
Gemini (Google) was slightly better on Natural2Code (Google).

- Meta has internal unit test sets for its internal LLMs.

2 Competitions Real-world impact3



How do we measure this?

1 Benchmark Tasks

Why are held-out (non-published) benchmarks valuable?

2 Competitions Real-world impact3



How do we measure this?

2 CompetitionsBenchmark Tasks1

AlphaCode by DeepMind (Li et al., Dec 2022) created CodeContests, a dataset of 
compiled competitive programming problems.

Increasingly, datasets from 
real-world tasks for humans are 
needed as models approach 
human-level performance.

Other examples: the LSAT, USMLE, 
AlphaGeometry (IMO problems)

Real-world impact3



How do we measure this?

2 CompetitionsBenchmark Tasks1 Real-world impact3



How do we measure this?

Competitions2Benchmark Tasks1 3 Real-world impact

As models begin to surpass human 
performance, they will be increasingly 
measured on impact.

Example: AlphaDev (Mankowitz and Michi, 
June 2023) discovered a faster sorting 
algorithm for small lists that has now been 
implemented in the C++ standard lib.

SWE KPIs (bug rate, PRs merged, etc) are 
starting to become more commonplace.



Benchmarking code generation
Benchmark: HumanEval

Base models

Fine-tuning / 
Instruct-tuning

Techniques

Base models



Benchmarking code generation
Benchmark: HumanEval

Base models

Fine-tuning / 
Instruct-tuning

Techniques

Base models

Open LLMs Closed LLMs
Weights are open, easy to do custom 
tuning and experimentation

Weights are closed, tuning and 
experimentation are limited

● CodeLlama (WizardCoder)
● StarCoder
● Replit-code-v1-3b
● Mixtral-8x7b

● GPT-4
● Gemini Ultra
● Claude 2.1
● Grok

Base Models are the GPTs and Llamas of the world: 
not fine-tuned for a particular task.



Benchmarking code generation
Benchmark: HumanEval

Base models

Fine-tuning / 
Instruct-tuning

Techniques

Base modelsBase Models are the GPTs and Llamas of the world: 
not fine-tuned for a particular task.

Gemma-7B



Benchmarking code generation
Benchmark: HumanEval

Base models

Fine-tuning / 
Instruct-tuning

Techniques

Base modelsInstruct-tuned models are models that are 
fine-tuned with instructions: in this case, for code.



Benchmarking code generation
Benchmark: HumanEval

Instruct-tuned models are models that are 
fine-tuned with instructions: in this case, for 
code.

Instruct-tuning involves a prompt which 
contains an instruction, and a response. 
Including the instruction is important for the 
model to know how to understand new 
instructions at inference time.

Example: Synthesis



Benchmarking code generation
Benchmark: HumanEval

Instruct-tuned models are models that are 
fine-tuned with instructions: in this case, for 
code.

Instruct-tuning involves a prompt which 
contains an instruction, and a response. 
Including the instruction is important for the 
model to know how to understand new 
instructions at inference time.

Example: Fix a bug



Benchmarking code generation
Benchmark: HumanEval

Instruct-tuning involves a prompt which 
contains an instruction, and a response. 
Including the instruction is important for the 
model to know how to understand new 
instructions at inference time.

Example: Explain code

Instruct-tuned models are models that are 
fine-tuned with instructions: in this case, for 
code.



Benchmarking code generation
Benchmark: HumanEval

Instruct-tuning is clearly useful. How can we 
scale it up?
As LLMs and datasets get larger, we 
increasingly need to think creatively about 
how to gather data in order to improve.

One example of this is COMMITPACK: 4 terabytes of Git commits across 350 
programming languages (Muennighoff et al, Jan 2024; ICLR preprint).

Git commits naturally pair code changes with human instructions.

Base models

Fine-tuning / 
Instruct-tuning

Techniques

Base models



Benchmarking code generation
Benchmark: HumanEval

Base models

Fine-tuning / 
Instruct-tuning

Techniques

Base modelsTechnique can make all the difference. This is broadly broken 
down into reasoning methods and decision-making methods.

79.3

83.8
GPT-3.5 (175B parameters)
Technique: LATS

GPT-4 (1.7T parameters (est))
Technique: None

GPT-3.5 beats GPT-4 
with LATS, despite 
being 10x smaller!

💡



Benchmarking code generation
Benchmark: HumanEval

Chain-of-Thought

S1

S2

S3

Chain-of-Thought (CoT) prompts LLMs to 
sequentially generate reasoning steps from 
input to output. It was first introduced in PaLM: 
Scaling Language Modeling with Pathways. 
(Chowdhery, Catasta et al., 2022) 

However, it suffers from error propagation as 
the chain length increases.

Output

Input

Reasoning Method



Benchmarking code generation
Benchmark: HumanEval

Tree-of-Thoughts
Input

S1

S2

S3

S1 S1

S2 S2S2

S3 S3 S3 S3

Tree-of-Thoughts (ToT) extends CoT by 
exploring multiple reasoning paths using 
search algorithms like BFS and DFS. 
(Yao et al., May 2023)

That said, it is limited by relying solely 
on the LLM's internal knowledge.

Output

Reasoning Method



Benchmarking code generation
Benchmark: HumanEval

Reasoning via Planning
Input

S1

S3

Output

S1

S2 S2S2

S3 S3 S3

S2

Output

Reasoning Method

Reasoning via Planning (RAP) 
(Hao et al., October 2023) uses 
Monte Carlo Tree Search for 
planning chains of reasoning.

However, it also lacks external 
feedback.



Benchmarking code generation
Benchmark: HumanEval

ReAct
Decision-making method

S1

S2

S3

Output

Input
Observation

ReAct prompts LLMs with alternating 
actions and observations for 
decision-making in interactive 
environments. (Yao et al., March 2023)

However, it greedily follows one 
trajectory and cannot adapt.



Benchmarking code generation
Benchmark: HumanEval

Reflexion

Reflexion adds self-reflection to ReAct. 
This improves overall performance by 
allowing the LLM more time to think 
through the problem, similar to CoT. 
(Shinn et al., October 2023)

However, it does not consider alternative 
options at each step.

Decision-making method

S1

S2

S3

Output

Input
Observation

Reflection



Benchmarking code generation
Benchmark: HumanEval

Language Agent Tree Search
Input

S1

S3

Output

S1

S2 S2S2

S3 S3 S3

S2

Output

Reflection

ObservationDecision-making method Reasoning Method

LATS unifies the strengths of both 
reasoning and decision-making methods 
through principled search, while 
overcoming limitations via environmental 
feedback and self-reflection. (Zhou et al., 
December 2023)

GPT-4 + LATS is the current best 
performer on the HumanEval 
benchmark, with a score of 94.4.



Applications and agents



Applications and agents

Project 
creation Migrations IDE Docs

Issues & 
tests

Coffee by
Cody by

AI has tackled every aspect of software engineering. 
(Category list below not exhaustive.)



Applications and agents

Project 
creation Migrations IDE Docs

Issues & 
tests

Coffee by
Cody by

AI has tackled every aspect of software engineering. 
(Category list below not exhaustive.)



Applications and agents

Project 
creation Migrations IDE Docs

Issues & 
tests

Coffee by
Cody by

AI has tackled every aspect of software engineering. 
(Category list below not exhaustive.)



Applications and agents

Project 
creation Migrations IDE Docs

Issues & 
tests

Coffee by
Cody by

AI has tackled every aspect of software engineering. 
(Category list below not exhaustive.)



Applications and agents

Project 
creation Migrations IDE Docs

Issues & 
tests

Coffee by
Cody by

AI has tackled every aspect of software engineering. 
(Category list below not exhaustive.)



Applications and agents
Deep dive: GPT-Migrate

https://docs.google.com/file/d/1P2hk6TNPD8zvOAVxow8EvAj3wgI23kdn/preview


Applications and agents
Deep dive: Coffee

https://docs.google.com/file/d/10aIAQiq5DM6azr4euD5ApfsJaz_OzC8G/preview


AI x Software Engineering

● Using code generation wisely

● Prompt engineering for code gen

● AI-driven development



AI x Software Engineering
Using code generation wisely

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY


AI x Software Engineering
Using code generation wisely

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY


AI x Software Engineering
Using code generation wisely

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY


AI x Software Engineering
Using code generation wisely

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY


AI x Software Engineering
Using code generation wisely

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY


AI x Software Engineering
Using code generation wisely

Credit to Joshua Morony

https://www.youtube.com/watch?v=6CGtwF_5kzY


AI x Software Engineering
Using code generation wisely

Why?

● Learning is important

● Understanding your code is important

● Maintainability and knowledge transfer is important

○ Fully LLM-written projects tend to produce 

“spaghetti code”. I know first-hand!



AI x Software Engineering
Prompt engineering for code gen

Principled Instructions are All You Need 

(Bsharat et al., December 2023)

Prompt engineering is likely more important to 
code generation than it is to any other area due 
to the precision required. Luckily, engineers are 
naturally good prompt engineers. 

Principled Instructions are All You Need gives 26 
general prompting guidelines (see chart).

Worth adding: only add the minimum viable 
context; context windows aren’t all made equal.



AI x Software Engineering
Prompt engineering for code gen

AlphaCodium 

(Ridnik et al., January 2024)

AlphaCodium formalized “Flow Engineering” for software 
engineering workflows, which many practitioners had been using 
already. Using GPT-4 on the CodeContests validation set, the 
pass@5 accuracy improved from 19% with a well-crafted single 
prompt to 44% with AlphaCodium.



AI x Software Engineering
Prompt engineering for code gen

Prompt hierarchy in GPT-Migrate

Prompt composition can become complex when you’re 
dealing with code-writing agents performing multiple 
types of software engineering tasks.

One solution is organizing them into a hierarchy and 
creating a constructor that can compose these prompts 
together, along with any variables you need to pass in 
from your code.

The simplest way to do this is using text files in labeled 
directories in your /prompts/ directory. I’m sure there will 
be headless prompt CMS’s at some point.



AI x Software Engineering
Prompt engineering for code gen
Sudolang is a natural language constraint-based 
programming pseudolanguage, with an LLM as the 
interpreter. What?

More simply, it combines natural language elements and 
simple coding conventions for better prompting.

SudoLang prompts can often be written with 20% - 30% 
fewer tokens than natural language.

The expressiveness and precision helps when writing 
code, as well as when “programming” the LLM to serve 
as an application itself.



AI x Software Engineering
AI-driven development: practical pointers



AI x Software Engineering

Language preference

LLMs do better with more 
popular languages. They 
also benefit from the 
clarity of typed 
languages.

AI-driven development: practical pointers



AI x Software Engineering

Language preference Project structure

LLMs do better with more 
popular languages. They 
also benefit from the 
clarity of typed 
languages.

Try to keep files and 
modular. Use headers and 
TDDs to help the LLM 
navigate and generate 
files.

AI-driven development: practical pointers



AI x Software Engineering

Language preference Project structure Interface-oriented programming

LLMs do better with more 
popular languages. They 
also benefit from the 
clarity of typed 
languages.

Try to keep files and 
modular. Use headers and 
TDDs to help the LLM 
navigate and generate 
files.

LLMs need context. 
Interfaces (input, 
output, transformation, 
types) give this. Use 
IOP in prompts.

AI-driven development: practical pointers



AI x Software Engineering

Language preference Project structure Interface-oriented programming

Logs-in-the-loop

LLMs do better with more 
popular languages. They 
also benefit from the 
clarity of typed 
languages.

Try to keep files and 
modular. Use headers and 
TDDs to help the LLM 
navigate and generate 
files.

LLMs need context. 
Interfaces (input, 
output, transformation, 
types) give this. Use 
IOP in prompts.

When debugging (or in a 
background loop), LLMs 
can digest logs and 
error traces. Very 
helpful!

AI-driven development: practical pointers



AI x Software Engineering

Language preference Project structure Interface-oriented programming

Logs-in-the-loop Tests, tests, tests

LLMs do better with more 
popular languages. They 
also benefit from the 
clarity of typed 
languages.

Try to keep files and 
modular. Use headers and 
TDDs to help the LLM 
navigate and generate 
files.

LLMs need context. 
Interfaces (input, 
output, transformation, 
types) give this. Use 
IOP in prompts.

When debugging (or in a 
background loop), LLMs 
can digest logs and 
error traces. Very 
helpful!

When generating entire 
functions and files, test 
coverage is CRUCIAL. 
(LLMs can write these 
too!)

AI-driven development: practical pointers



AI x Software Engineering

Language preference Project structure Interface-oriented programming

Logs-in-the-loop Tests, tests, tests Output structure

LLMs do better with more 
popular languages. They 
also benefit from the 
clarity of typed 
languages.

Try to keep files and 
modular. Use headers and 
TDDs to help the LLM 
navigate and generate 
files.

LLMs need context. 
Interfaces (input, 
output, transformation, 
types) give this. Use 
IOP in prompts.

When debugging (or in a 
background loop), LLMs 
can digest logs and 
error traces. Very 
helpful!

When generating entire 
functions and files, test 
coverage is CRUCIAL. 
(LLMs can write these 
too!)

YAML uses as little as 
50% of the tokens that 
JSON output does. Even 
with JSON mode, YAML 
wins.

AI-driven development: practical pointers



Acknowledgements

● Michele Catasta

● Pavlo Razumovskyi

● Glavin Wiechert

● Tinah Hong

● Alex Korshuk

● John Whaley

Thank you!



Questions

josh@coframe.ai


