CS 224N Winter 2026 Assignment 2
Word2Vec and Dependency Parsing

Due date: January 22nd, Thursday, 4:30 PM PST
In this assignment, you will review the mathematics behind Word2Vec and build a neural dependency
parser using PyTorch. For a review of the fundamentals of PyTorch, please check out the PyTorch review
session on Canvas. In Part 1, you will explore the partial derivatives involved in training a Word2vec
model using the naive softmax loss. In Part 2, you will learn about two general neural network techniques
(Adam Optimization and Dropout). In Part 3, you will implement and train a dependency parser using the
techniques from Part 2, before analyzing a few erroneous dependency parses.
If you are using LaTeX, you can use \ifans{} to type your solutions.
Please tag the questions correctly on Gradescope, otherwise the TAs will take points off if you
don’t tag questions.
1. Understanding word2vec (20 points)
Recall that the key insight behind word2vec is that ‘a word is known by the company it keeps’. Con-
cretely, consider a ‘center’ word ¢ surrounded before and after by a context of a certain length. We term
words in this contextual window ‘outside words’ (O). For example, in Figure (I} the context window
length is 2, the center word c is ‘banking’, and the outside words are ‘turning’, ‘into’, ‘crises’, and ‘as’:

p (ummmg |vbﬂﬂkiﬂ3 ) P (uas |17bcmking)

P(Winto | Voanking) P(tcrises [Vpanking

problems  turning into crises  as

L J
. L . ]

\—'—J
outside context words center word outside context words
in window of size 2 at position t in window of size 2

Figure 1: The word2vec skip-gram prediction model with window size 2

Skip-gram word2vec aims to learn the probability distribution P(O|C). Specifically, given a specific
word o and a specific word ¢, we want to predict P(O = o|C' = ¢): the probability that word o is an
‘outside’ word for ¢ (i.e., that it falls within the contextual window of ¢). We model this probability by
taking the softmax function over a series of vector dot-products:

exp(u, v)
ZwGVocab exp(ug VC)

For each word, we learn vectors u and v, where u, is the ‘outside’ vector representing outside word o,
and v, is the ‘center’ vector representing center word c. We store these parameters in two matrices,
U and V. The columns of U are all the ‘outside’ vectors u,,; the columns of V are all of the ‘center’
vectors v,,. Both U and V contain a vector for every w € Vocabularyﬂ

P(O=o|C=¢)= (1)

1 Assume that every word in our vocabulary is matched to an integer number k. Bolded lowercase letters represent vectors.
uy, is both the kt" column of U and the ‘outside’ word vector for the word indexed by k. vy, is both the k" column of V and
the ‘center’ word vector for the word indexed by k. In order to simplify notation we shall interchangeably use k to
refer to word k£ and the index of word k.



CS 224n Assignment 2 Page 2 of 8

Recall from lectures that, for a single pair of words ¢ and o, the loss is given by:

Jnaive—softmax(vm o, U) = - IOg P(O = 0|C = C)' (2)

We can view this loss as the cross—entropyﬂ between the true distribution y and the predicted distribu-
tion y, for a particular center word ¢ and a particular outside word o. Here, both y and y are vectors
with length equal to the number of words in the vocabulary. Furthermore, the & entry in these vectors
indicates the conditional probability of the k*" word being an ‘outside word’ for the given ¢. The true
empirical distribution y is a one-hot vector with a 1 for the true outside word o, and 0 everywhere else,
for this particular example of center word ¢ and outside word OE| The predicted distribution y is the
probability distribution P(O|C' = ¢) given by our model in equation ().

Note: Throughout this homework, when computing derivatives, please use the method reviewed during
the lecture (i.e. no Taylor Series Approximations).

(a) (2 points) Prove that the naive-softmax loss (Equation [2)) is the same as the cross-entropy loss
between y and y, i.e. (note that y (true distribution), ¥ (predicted distribution) are vectors and
Vo is a scalar):

- Z Ywlog(Yuw) = —log(yo). (3)

w€EVocab
Your answer should be one line. You may describe your answer in words.

(b) (6 points) i. Compute the partial derivative of Jyaive-softmax(Ve, 0, U) with respect to v.. Please
write your answer in terms of y, ¥, U, and show your work to receive full credit.

e Note: Your final answers for the partial derivative should follow the shape convention: the
partial derivative of any function f(z) with respect to x should have the same shape as
2

e Please provide your answers for the partial derivative in vectorized form. For example,
when we ask you to write your answers in terms of y, y, and U, you may not refer to
specific elements of these terms in your final answer (such as y1, y2, ...). You may also
not refer to specific vectors such as ug, uy, etc.

ii. When is the gradient you computed equal to zero? Write a mathematical equation.
Hint: You may wish to review and use some introductory linear algebra concepts.

iii. The gradient you found is the difference between the two terms. Provide an interpretation of
how each of these terms improves the word vector when this gradient is subtracted from the
word vector v,.

(¢) (1 point) In many downstream applications using word embeddings, L2 normalized vectors (e.g.
u/||ullz where |Jullz = />, u?) are used instead of their raw forms (e.g. u). Let’s consider
a hypothetical downstream task of binary classification of phrases as being positive or negative,
where you decide the sign based on the sum of individual embeddings of the words. When would
L2 normalization take away useful information for the downstream task? When would it not?
Hint: Consider the case where u,; = au, for some words = # y and some scalar a. When « is
positive, what will be the value of normalized u, and normalized u,? How might u, and u, be
related for such a normalization to affect or not affect the resulting classification?

2The cross-entropy loss between the true (discrete) probability distribution p and another distribution q is — > pilog(gs).
3Note that the true conditional probability distribution of context words for the entire training dataset would not be one-hot.
4This allows us to efficiently minimize a function using gradient descent without worrying about reshaping or dimension

mismatching. While following the shape convention, we’re guaranteed that 6 := 6 — aa‘é(f) is a well-defined update rule.




CS 224n

Assignment 2 Page 3 of 8

(d)

(1 point) Write down the partial derivative of Jpaive-softmax(Ve, 0, U) with respect to U. Please
9J(ve,0,U)  9J(ve,0,U0) 0 9J(ve,0,0)
ouy ’ Ouy ’ AU vocab| ( 0

break down your answer in terms of the column vectors
not further expand these terms). No derivations are necessary, just an answer in the form of a
matrix.

(5 points) Compute the partial derivatives of Jnaive-softmax(Ve, 0, U) with respect to each of the
‘outside’ word vectors, u,,’s. There will be two cases: when w = o, the true ‘outside’ word vector,
and w # o, for all other words. Please write your answer in terms of y, y, and v.. In this subpart,
you may use specific elements within these terms as well (such as y1, y2, ...). Note that u,, is a
vector while y1,y2, ... are scalars. Show your work to receive full credit.

(2 points) As an additional exercise for this problem, you will be taking the derivatives of some
common loss functions, which may be used in variations of word2vec (such as the negative sampling
variant). The Leaky ReLU (Leaky Rectified Linear Unit) activation function is given by Equation

[ and Figure [2}
f(z) = max(oz, ) ()

fix)

| )

a*x

Figure 2: Leaky ReLU

Where z is a scalar and 0 < a < 1, please compute the derivative of f(z) with respect to z. You
may ignore the case where the derivative is not defined at OE|

(3 points) The sigmoid function is given by Equation

1 er

= (5)

:1+e*z et +1

o(x)

Please compute the derivative of o(x) with respect to x, where x is a scalar. Please write your
answer in terms of o(z). Show your work to receive full credit.

5If you’re interested in how to handle the derivative at this point, you can read more about the notion of subderivatives.



CS 224n Assignment 2 Page 4 of 8

2. Neural Networks Optimization (8 points)

(a) (4 points) Adam Optimizer
Recall the standard Stochastic Gradient Descent update rule:

041 — 0, — Oévet Jminibateh (0¢)

where t + 1 is the current timestep, € is a vector containing all of the model parameters, (0; is
the model parameter at time step ¢, and 0,7 is the model parameter at time step ¢ + 1), J is the
loss function, Vg Juminibatcn(8) is the gradient of the loss function with respect to the parameters
on a minibatch of data, and « is the learning rate. Adam Optimizatiorﬁ uses a more sophisticated
update rule with two additional stepsm
i. (2 points) First, Adam uses a trick called momentum by keeping track of m, a rolling average
of the gradients:

myi = fimy + (1 — 51)Vg, Jminibaten (61)
0,110, —am;
where (8 is a hyperparameter between 0 and 1 (often set to 0.9). Briefly explain in 2—4

sentences (you don’t need to prove mathematically, just give an intuition) how using m stops
the updates from varying as much and why this low variance may be helpful to learning, overall.

ii. (2 points) Adam extends the idea of momentum with the trick of adaptive learning rates by
keeping track of v, a rolling average of the magnitudes of the gradients:

meiq < fime + (1 — 51)Vg, Jminibaten (6:)
Vit1 < ﬂ?vt + (]- - 62)(v0t Jminibatch(et) © vet Jminibatch(ot))
011 — 0, —omy 1 /\/Vipa

where ® and / denote elementwise multiplication and division (so z®z is elementwise squaring)
and (5 is a hyperparameter between 0 and 1 (often set to 0.99). Since Adam divides the update
by /v, which of the model parameters will get larger updates? Why might this help with
learning? Briefly explain in 2—4 sentences.

(b) (4 points) Dropoutﬁ is a regularization technique. During training, dropout randomly sets units
in the hidden layer h to zero with probability pasop (dropping different units each minibatch), and
then multiplies h by a constant . We can write this as:

hdrop = ’}/d ©h

where d € {0,1}P" (Dj, is the size of h) is a mask vector where each entry is 0 with probability
Pdrop and 1 with probability (1 — parop). v is chosen such that the expected value of hyyep is h:

Epgrop Rdropli = R

for all i € {1,...,Dp}.
i. (2 points) What must 7 equal in terms of parop? Briefly justify your answer or show your math
derivation using the equations given above.
ii. (2 points) Why should dropout be applied during training? Why should dropout NOT be
applied during evaluation? Briefly explain in 2—4 sentences. Hint: it may help to look at
the dropout paper linked.

6Kingma and Ba, 2015, https://arxiv.org/pdf/1412.6980.pdf

7The actual Adam update uses a few additional tricks that are less important, but we won’t worry about them here. If you
want to learn more about it, you can take a look at: http://cs231n.github.io/neural-networks-3/#sgd

8Srivastava et al., 2014, https://www.cs.toronto.edu/~-hinton/absps/JMLRdropout .pdf


https://arxiv.org/pdf/1412.6980.pdf
http://cs231n.github.io/neural-networks-3/#sgd
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

CS 224n Assignment 2 Page 5 of 8

3. Neural Transition-Based Dependency Parsing (40 points)
In this section, you’ll be implementing a neural-network based dependency parser with the goal of max-
imizing performance on the UAS (Unlabeled Attachment Score) metric.

Before you begin, please follow the README to install all the needed dependencies for the assignment.
We will be using PyTorch 2.1.2 from https://pytorch.org/get-started/locally/| with the
CUDA option set to None, and the tqdm package — which produces progress bar visualizations through-
out your training process. The official PyTorch website is a great resource that includes tutorials for
understanding PyTorch’s Tensor library and neural networks.

A dependency parser analyzes the grammatical structure of a sentence, establishing relationships between
head words, and words which modify those heads. There are multiple types of dependency parsers,
including transition-based parsers, graph-based parsers, and feature-based parsers. Your implementation
will be a transition-based parser, which incrementally builds up a parse one step at a time. At every step
it maintains a partial parse, which is represented as follows:

e A stack of words that are currently being processed.
e A buffer of words yet to be processed.
e A list of dependencies predicted by the parser.

Initially, the stack only contains ROOT, the dependencies list is empty, and the buffer contains all words
of the sentence in order. At each step, the parser applies a transition to the partial parse until its buffer
is empty and the stack size is 1. The following transitions can be applied:

e SHIFT: removes the first word from the buffer and pushes it onto the stack.

e LEFT-ARC: marks the second (second most recently added) item on the stack as a dependent of
the first item and removes the second item from the stack, adding a first.word — second_word
dependency to the dependency list.

e RIGHT-ARC: marks the first (most recently added) item on the stack as a dependent of the second
item and removes the first item from the stack, adding a second_word — first_word dependency to
the dependency list.

On each step, your parser will decide among the three transitions using a neural network classifier.

(a) (4 points) Go through the sequence of transitions needed for parsing the sentence “I presented my
findings at the NLP conference”. The dependency tree for the sentence is shown below. At each
step, give the configuration of the stack and buffer, as well as what transition was applied this
step and what new dependency was added (if any). The first three steps are provided below as an
example.

obl
case
. obj det
Wnsubj VBD Wﬂknmod.poss compound
~ —_—— —_— —

/= —— —
I presented my findings at the NLP conference
Stack ‘ Buffer ‘ New dependency ‘ Transition
[ROOT] [I, presented, my, findings, at, the, NLP, conference] Initial Configuration
[ROOT, 1] [presented, my, findings, at, the, NLP, conference] SHIFT
[ROOT, I, presented] | [my, findings, at, the, NLP, conference] SHIFT
[ [

ROOT, presented| my, findings, at, the, NLP, conference] presented—1 LEFT-ARC


https://pytorch.org/get-started/locally/

CS 224n Assignment 2 Page 6 of 8

(b) (2 points) A sentence containing n words will be parsed in how many steps (in terms of n)? Briefly
explain in 1-2 sentences why.

(¢) (6 points) Implement the __init__ and parse_step functions in the PartialParse class in
parser_transitions.py. This implements the transition mechanics your parser will use. You
can run basic (non-exhaustive) tests by running python parser_transitions.py part._c.

(d) (8 points) Our network will predict which transition should be applied next to a partial parse. We
could use it to parse a single sentence by applying predicted transitions until the parse is complete.
However, neural networks run much more efficiently when making predictions about batches of data
at a time (i.e., predicting the next transition for any different partial parses simultaneously). We
can parse sentences in minibatches with the following algorithm.

Algorithm 1 Minibatch Dependency Parsing

Input: sentences, a list of sentences to be parsed and model, our model that makes parse decisions

Initialize partial_parses as a list of PartialParses, one for each sentence in sentences
Initialize unfinished_parses as a shallow copy of partial parses
while unfinished_parses is not empty do
Take the first batch_size parses in unfinished_ parses as a minibatch
Use the model to predict the next transition for each partial parse in the minibatch
Perform a parse step on each partial parse in the minibatch with its predicted transition
Remove the completed (empty buffer and stack of size 1) parses from unfinished parses
end while

Return: The dependencies for each (now completed) parse in partial parses.

Implement this algorithm in the minibatch_parse function in parser_transitions.py. You
can run basic (non-exhaustive) tests by running python parser_transitions.py part_d.
Note: You will need minibatch_parse to be correctly implemented to evaluate the model you will
build in part (e). However, you do not need it to train the model, so you should be able to complete
most of part (e) even if minibatch_parse is not implemented yet.

(e) (20 points) We are now going to train a neural network to predict, given the state of the stack,
buffer, and dependencies, which transition should be applied next.
First, the model extracts a feature vector representing the current state. We will be using the feature
set presented in the original neural dependency parsing paper: A Fast and Accurate Dependency
Parser using Neural Networksﬂ The function extracting these features has been implemented for
you in utils/parser_utils.py. This feature vector consists of a list of tokens (e.g., the last
word in the stack, first word in the buffer, dependent of the second-to-last word in the stack if there
is one, etc.). They can be represented as a list of integers w = [wy, wa, ..., w,] where m is the
number of features and each 0 < w; < |V] is the index of a token in the vocabulary (|V] is the
vocabulary size). Then our network looks up an embedding for each word and concatenates them
into a single input vector:

X = [Ew,, -, By, ] € RI™

where E € RIVI*4 is an embedding matrix with each row E,, as the vector for a particular word w

9Chen and Manning, 2014, https://nlp.stanford.edu/pubs/emnlp20l4-depparser.pdf


https://nlp.stanford.edu/pubs/emnlp2014-depparser.pdf

CS 224n

Assignment 2 Page 7 of 8

with dimension d. We then compute our prediction as:

h = ReLU(xW + by)
1=hU + by
y = softmax({)

where h is referred to as the hidden layer, 1 is referred to as the logits, y is referred to as the
predictions, and ReLU(z) = max(z,0)). We will train the model to minimize cross-entropy loss:

3
J(0) = CE(y,9) = —» y;logy;
=1

where y; denotes the jth element of y. To compute the loss for the training set, we average this

J(0) across all training examples.

i

ii.

iii.

Compute the derivative of h = ReLU(XxW + b;) with respect to x. For simplicity, you only

Bhi
Swj

need to show the derivative for some index ¢ and j. You may ignore the case where the

derivative is not defined at 0.

Recall in part 1b, we computed the partial derivative of Jyaive-softmax(Ve, 0, U). Likewise, please
compute the partial derivative of J(#) with respect to the ith entry of 1, which is denoted as 1;.

801379,51)7 assuming that 1 € R3, y € R?, y € R3, and the true label is c

(i.e., y; = 11if j = ¢). Hint: Use the chain rule: %—‘1] = % : %.
We will use UAS score as our evaluation metric. UAS refers to Unlabeled Attachment Score,
which is computed as the ratio between number of correctly predicted dependencies and the

number of total dependencies despite of the relations (our model doesn’t predict this).

Specifically, compute

In parser_model.py you will find skeleton code to implement this simple neural network using
PyTorch. Complete the __init__, embedding_lookup and forward functions to implement
the model. Then complete the train_for_epoch and train functions within the run.py
file.

Finally execute python run.py to train your model and compute predictions on test data
from Penn Treebank (annotated with Universal Dependencies).

Note:

e For this assignment, you are asked to implement Linear layer and Embedding layer. Please
DO NOT use torch.nn.Linear or torch.nn.Embedding module in your code, otherwise
you will receive deductions for this problem.

e Please follow the naming requirements in our TODO if there are any, e.g. if there are
explicit requirements about variable names you have to follow them in order to receive full
credits. You are free to declare other variable names if not explicitly required.

Hints:

e Each of the variables you are asked to declare (self.embed to_hidden weight,
self.embed to_hidden_bias, self.hidden_to_logits_weight,
self.hidden_to_logits_bias) corresponds to one of the variables above (W, by, U,
bs).

e It may help to work backwards in the algorithm (start from §) and keep track of the
matrix/vector sizes.

e Once you have implemented embedding_lookup (e) or forward (f) you can call
python parser.model.py with flag —e or —f or both to run sanity checks with each



CS 224n

Assignment 2 Page 8 of 8

function. These sanity checks are fairly basic and passing them doesn’t mean your code is
bug free.

When debugging, you can add a debug flag: python run.py -d. This will cause the
code to run over a small subset of the data, so that training the model won’t take as long.
Make sure to remove the —d flag to run the full model once you are done debugging.
When running with debug mode, you should be able to get a loss smaller than 0.2 and a
UAS larger than 65 on the dev set (although in rare cases your results may be lower, there
is some randomness when training).

It should take up to 15 minutes to train the model on the entire training dataset, i.e.,
when debug mode is disabled.

When debug mode is disabled, you should be able to get a loss smaller than 0.08 on the train
set and an Unlabeled Attachment Score larger than 87 on the dev set. For comparison, the
model in the original neural dependency parsing paper gets 92.5 UAS. If you want, you can
tweak the hyperparameters for your model (hidden layer size, hyperparameters for Adam,
number of epochs, etc.) to improve the performance (but you are not required to do so).

Deliverables:

Working implementation of the transition mechanics that the neural dependency parser
uses in parser_transitions.py.

Working implementation of minibatch dependency parsing in parser_transitions.py.
Working implementation of the neural dependency parser in parser model.py. (We'll
look at and run this code for grading).

Working implementation of the functions for training in run.py. (We'll look at and run
this code for grading).

Please use efficient functions and avoid for loops when implementing embedding_lookup.
Otherwise, you may exceed the GradeScope test time limit.

Report the best UAS your model achieves on the dev set and the UAS it
achieves on the test set in your written submission. You can report it in the PDF
and tag the page.

Submission Instructions

You shall submit this assignment on GradeScope as two submissions — one for Assignment 2 [coding]
and another for Assignment 2 [written]:

1. Run the collect_submission.sh script to produce your assignment2.zip file.

2. Upload your assignment?2.zip file to GradeScope to Assignment 2 [coding].

3. Upload your written solutions to GradeScope to Assignment 2 [written].



