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Abstract

Traditional retrieval-augmented generation (RAG) approaches struggle with multi-hop
reasoning and global query-focused summarization tasks over large document corpora, which
require summarizing broad themes and contexts and a holistic knowledge of documents.
We propose GRAFT (Graph Retrieval Augmented Fine-Tuning), a novel approach that
combines the strengths of the Retrieval Augmented Fine-Tuning (RAFT) methodology and
the GraphRAG technique. GRAFT fine-tunes large language models (LLMs) on a simulated
imperfect retrieval setting, training the model to identify relevant documents and ignore
distractors in the provided context. The model is then coupled with graphRAG at inference.
To investigate the effectiveness of the GRAFT methodology, we constructed a knowledge
graph using 74 Wikipedia source documents and extracted communities within this graph.
We then summarized these communities, leveraging local and global relationships between
documents for retrieval, fine-tuned a Microsoft Phi-2 model using the RAFT approach
on a subset of the HotPotQA dataset, and evaluated its performance on a custom set of
multi-hop and global questions generated from Wikipedia articles published in 2024. Our
experimental results demonstrate that GRAFT outperforms baseline models, including the
Baseline RAG model, the RAFT model, and the Baseline GraphRAG model, across various
evaluation metrics like BERT, BLEU, ROUGE-1, and Semantic Similarity. In particular,
GRAFT achieves the highest scores on global questions, showcasing its effectiveness in
query-focused summarization tasks that require understanding broad themes and contexts
over large document corpora.
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2 Introduction

Large language models (LLMs) have shown remarkable capabilities in natural language processing tasks, but
they often struggle with hallucinations, coherence, and factual consistency, especially in complex, domain-
specific scenarios [1, 2]. Retrieval-Augmented Generation (RAG) systems, which combine LLMs with
external knowledge bases, have emerged as a promising approach to mitigate these limitations by grounding
the model’s outputs in factual knowledge and ensuring their consistency with the input context [3]. Despite
their potential, traditional RAG systems face challenges in retrieval accuracy, contextual understanding, and
response coherence when dealing with multi-hop reasoning and global query-focused summarization tasks
over large document corpora [4].

This paper focuses on two types of questions that pose challenges to traditional RAG methods: multi-hop
questions, which require reasoning across multiple pieces of information, and global questions, which demand
an understanding of an entire dataset. To improve model performance on these question types, we propose
GRAFT, a novel approach that combines the RAFT approach [5] with the GraphRAG [6] approach, capturing
global and local information within the documents through extracted communities from a knowledge graph.

Our results show that the GRAFT model outperforms all other models, and both RAFT and Baseline GraphRAG
outperform the baseline RAG model, which indicates that the combination of fine-tuning and community
summary extraction improves answer quality further. Furthermore, compared to baseline RAG and RAFT, the
baseline GraphRAG model and GRAFT both show better performance on global questions than non-global
questions on most evaluation metrics.

3 Related Work

3.1 RAG and Its Current Limitations

Existing studies have advocated for the need for LLMs to move beyond simply reciting the training data
[7] to actively seek out and synthesize information from supplemental knowledge bases to tackle complex,
context-rich queries. To this end, RAG marries the open-ended generation capabilities of large language
models with targeted information retrieval by first scouring the corpus, surfacing relevant passages, feeding
the extracts with the original query, and finally producing an output [8]. Evaluations have shown that RAG
models generate more specific, diverse and factual language than seq2seq baselines [3]. RAG has also been
applied to fact-checking [9] and has shown promise in document-grounded dialogue [10].

Despite the strengths of current RAG systems, challenges such as maintaining the relevance of the retrieved
information and handling complex, domain-specific scenarios remain. In particular, RAG struggles with
global questions, such as identifying the main themes throughout an entire text corpora, as this task requires
query-focused summarization (QFS) rather than explicit retrieval [11] . The key limitation of RAG systems
in answering global questions stems from their top-k retrieval method. By focusing on retrieving only the
most relevant passages, RAG fails to capture the broader context and overarching themes necessary to address
global queries effectively.

3.2 Advanced RAG Techniques

To address traditional RAG methods’ limitation of proficiency in multi-hop reasoning, researchers have
proposed several advanced techniques, including Forward-Looking Active REtrieval augmented generation
(FLARE) [12], self-memory techniques [13], prompt-guided retrieval augmentation [14], retrieval augmented
reinforcement learning [15], Dense Knowledge Retrieval [16], Iter-RetGen [17] (which synthesizes retrieval
and generation iteratively), Generation-Augmented Retrieval (GAR) [18], and LTRGR [19], which combines
generative retrieval with the classical learning-to-rank paradigm.

While the techniques outlined above can improve question-answering accuracy for open-domain tasks, they
fail to tackle multi-hop and global questions. Another common approach focuses on fine-tuning RAG models
[20]. One such approach is RAFT (Retrieval-Augmented Fine-Tuning), which enhances the model’s ability to
differentiate between relevant and irrelevant documents by employing a chain-of-thought fine-tuning process.

Another common approach to tackle global questions relies on graph construction [21]. In particular,
GraphRAG [11] constructs a knowledge graph from source documents, explicitly modeling the relation-
ships between different pieces of information and uses community summaries and hierarchical indexing to
generate comprehensive answers, which effectively captures semantic and contextual relationships.
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Moreover, hierarchical methods, such as HiQA (Hierarchical Contextual Augmentation) [22], have also
shown promise in addressing the challenges of multi-hop reasoning by integrating cascading metadata and a
multi-route retrieval mechanism to enhance precision and relevance in knowledge retrieval.

The three methods present distinct strengths: RAFT allows the model to better identify relevant information
in retrieved documents; GraphRAG relies on an explicit knowledge graph representation; HiQA leverages a
hierarchical metadata structure and multi-route retrieval to identify relevant information. However, no existing
study has explored the confluence of these approaches. Our study fills this gap by combining supervised
fine-tuning with knowledge graph construction to examine the performance of such an approach.

4 Approach

4.1 RAFT-inspired Finetuning on Multi-Hop Reasoning Task

We follow the approach outlined in RAFT [5] by fine-tuning the Microsoft Phi-2 model [23] using relevant and
distractor documents. Specifically, we fine-tuned Phi-2 with QLoRA [24] on a subset of the HotPotQA dataset
[25], modifying the training data to align with the RAFT methodology. Each training example consisted of
a question, an answer, and a set of passages: 1-2 oracle passages required to answer the question, and 3-4
irrelevant distractor passages. The preprocessing steps were as follows:

1. Extracting the relevant (oracle) documents and padding with irrelevant documents until the maximum
token length of 2048 was reached.

2. Constructing the input prompt by combining the instruction, question, context, and answer.

3. Shuffling the order of the context passages to prevent the model from relying on positional cues
(relevant documents tended to be first).

We used Retrieval Augmented Generation (RAG) [3] to enhance the performance of question answering
models by leveraging an external knowledge base. The following steps were taken:

• Embedding and Storage: Wikipedia articles were chunked into passages of 800 tokens each with
100-token overlap and embedded using the ’all-MiniLM-L6-v2’ model from Sentence Transformers
[26]. The embeddings were then stored in a FAISS vector database [27].

• Retrieval: During inference, for each question, the top 3 relevant passages were retrieved from
the vector database based on cosine similarity between the question embedding and the passage
embeddings.

• Generation: The retrieved passages were provided as additional context to the finetuned Microsoft
Phi-2 model at inference.

4.2 GraphRAG

Our GraphRAG approach involves the following steps:

1. Text Chunking: The source documents are split into smaller text chunks of a fixed token length (e.g.,
800 tokens) with overlapping windows to maintain context continuity.

2. Entity and Relation Extraction: A large language model (LLM), notably GPT-4o, is used to extract
entity mentions and relation mentions from each text chunk. This is done by providing the LLM with
prompts tailored to the domain, which contain few-shot examples of entities and relations to learn
from. The LLM outputs tuples containing the entity/relation text, type, and description.

3. Graph Construction: The extracted entity and relation mentions are used to construct an undirected,
weighted graph. Each unique entity mention becomes a node in the graph. If a relation mention
links two entity mentions, an edge is created between their corresponding nodes. The edge weight is
assigned based on the frequency of that specific relation mention across all text chunks.
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Figure 1: GPT-4o Knowledge Graph, color-coded by community. The graph is constructed based on Wikipedia
articles on Oppenheimer, The Barbie Movie (2023), and The Tortured Poets Department. The cluster in dark
blue represent nodes constructed from The Tortured Poets Department. The top right cluster is from Barbie,
and the bottom cluster is from Oppenheimer.

4. Community Detection: The Leiden algorithm [28] is applied to the constructed graph to identify
communities of closely related nodes (entities) based on their edge connections and weights. This
results in a hierarchical partition of the graph into communities at different levels.

5. Community Summarization: For each community at each level of the hierarchy, the LLM generates
a concise summary describing the entities, relations, and other relevant information contained within
that community. These summaries act as the index for retrieval during query time. A comparison of a
Leiden extracted community and its generated community summary is shown in 10

6. Query Processing: Given a user query, the top k = 1 relevant community summary is retrieved by
computing the cosine similarity between the query embedding and the pre-computed embeddings of
the community summaries. The summary is then chained with the query for input into the LLM. The
answer is then generated with this retrieval-augmented generation (RAG) approach.

5 Experiments

5.1 Data

For our experiments, we utilize two datasets: the HotPotQA dataset [25] for model fine-tuning, and a custom
dataset consisting of Wikipedia articles for evaluating global question answering.

HotPotQA The HotPotQA dataset [25] is a multi-hop reasoning dataset that requires retrieving and combin-
ing information from multiple supporting documents to answer each question. It contains 112,779 questions
based on Wikipedia articles, with each question being accompanied by a set of relevant documents. The
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questions are designed to test a model’s ability to perform multi-hop reasoning and gather information from
multiple sources. We utilize this dataset to fine-tune the RAFT model.

Global Question Evaluation Dataset To evaluate our models’ performance on global question answering,
we curated a custom dataset from Wikipedia articles. Specifically, we selected 74 source documents from the
Wikipedia 2024 corpus, which includes articles published after the model’s training cutoff date. From these
articles, we constructed a set of 67 global questions that require understanding the broad themes and overall
context of the source documents. These questions are designed to assess a model’s ability to perform global
summarization and answer queries that necessitate comprehending the entire document corpus, rather than
focusing on specific details or facts.

The global questions in our evaluation dataset (examples shown in 9) are intended to simulate real-world
scenarios where users seek high-level insights and overarching themes from a collection of documents. By
evaluating our models on this custom dataset, we can assess their effectiveness in performing query-focused
summarization and providing comprehensive answers that capture the overall context and main topics of the
source documents.

5.2 Evaluation method

For each question, we provided GPT-4 with the source documents and used model-generated responses as
the gold standard answers. We evaluated the question answering performance using both human evaluation
and four other metrics, including BERT-Score [29], BLEU Score, ROUGE-1 Score [30], and Semantic
Similarity [31]. The human evaluation reflects human judgment of the correctness of model responses given
the gold standard answer, providing a direct assessment of the model’s performance from a user’s perspective.
BERT-Score leverages the contextual embeddings of the generated response and reference and is calculated by
aggregating token-level cosine similarities between the generated response and reference. The BERT-Score is
a helpful metric for our purpose because it captures semantic similarity and can handle paraphrasing, which
is crucial in evaluating the model’s ability to generate semantically equivalent answers even if they differ in
exact wording.

The BLEU (Bilingual Evaluation Understudy) Score is a metric for evaluating the quality of machine-
translated text by comparing it to reference texts using N-gram matching. While originally designed for
machine translation, BLEU has been widely adopted in various natural language generation tasks, including
question answering. It provides a measure of the model’s ability to generate answers that match the reference
in terms of n-gram overlap.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics used to evaluate the quality of
text summarization and machine-generated text by comparing it to reference texts. Specifically, ROUGE-1
calculates the overlap of unigrams, which helps assess the model’s ability to generate relevant content at the
word level. Similar to BERT-Score, Semantic Similarity measures how much two pieces of text are similar in
terms of their meaning by calculating the cosine similarity between word embeddings. This metric allows for
contextual relevance and flexibility in expression, capturing the model’s ability to generate answers that are
semantically similar to the reference, even if they use different words or phrasing.

By using a combination of human evaluation and these four automated metrics, we aim to comprehensively
assess the model’s performance in generating accurate, semantically relevant, and fluent answers, while
accounting for various aspects of language generation quality.

5.3 Experimental details

We fine-tuned a Microsoft Phi-2 model using the PEFT (Parameter-Efficient Fine-Tuning) technique, specifi-
cally utilizing the QLoRA (Quantized Low-Rank Adaptation) method on a subset of the HotPotQA dataset
(20,000 samples). QLoRA combines LoRA with 4-bit quantization to reduce memory usage and enable
efficient training on a single GPU.

Model Configuration:

• Base Model: Microsoft Phi-2
• Quantization: 4-bit quantization using BitsAndBytesConfig
• QLoRA Configuration:

– Rank (r): 32
– LoRA alpha: 32
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– Target modules: [q_proj, k_proj, v_proj, out_proj, ’dense’]
– LoRA dropout: 0.05

Machine Configuration:

• GPU: NVIDIA T4
• GPU Memory: 16 GB
• CPU: Intel Xeon
• RAM: 64 GB

Fine-tuning Hyperparameters:

• Number of epochs: 1
• Per device train batch size: 1
• Gradient accumulation steps: 8
• Learning rate: 2e-4
• Optimizer: 8-bit Paged AdamW

5.4 Results

Figures 2, 3, and 4 present the evaluation results on global questions. The GRAFT model achieves the highest
scores across all metrics: BERT (0.330), BLEU (0.143), ROUGE-1 (0.428), and Semantic Similarity (0.863),
outperforming the Baseline RAG model, RAFT, and Baseline GraphRAG. For each metric, the best score is
bolded.

Figure 2: Evaluation results for global questions

Figure 3: Evaluation results for non-global question

Figure 4: Joint metrics (whole dataset)

Figure 3 shows the evaluation results on non-global questions. GRAFT maintains its superior performance,
achieving the highest scores on BERT (0.312), BLEU (0.146), ROUGE-1 (0.397), and Semantic Similarity
(0.791). For the majority of the metrics, GRAFT has a higher score on global questions compared to non-global
questions, whereas the opposite is observed for Baseline RAG, meaning that GRAFT achieves especially
improved performance for global questions. Considering the joint metrics across the entire dataset in Table 4
4, GRAFT consistently outperforms all other models across BERT (0.320), BLEU (0.145), ROUGE-1 (0.410),
and Semantic Similarity (0.822), demonstrating its versatility and robustness. Moreover, for all metrics, both
RAFT and Baseline GraphRAG outperform Baseline RAG model, supporting previous findings that fine-tuning
and graph construction improve question-answering performance.
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6 Analysis

6.1 Qualitative Evaluation

Figure 5: Comparison of GRAFT, RAFT, and Baseline GraphRAG responses on "How do the chemistry and
relationships in the Barbie film contribute to its narrative?"

To gain a deeper understanding of GRAFT’s performance, we compare the responses generated by GRAFT,
RAFT, and Baseline GraphRAG for a selected example (Figure 5). RAFT’s response repeatedly mentions
incorrect DVD release information, failing to address the question about character relationships in the Barbie
film. This indicates poor query understanding and irrelevant information retrieval. Baseline GraphRAG
provides a more relevant account of Barbie and Ken’s chemistry but includes the factual error of mentioning
Florence Pugh, who is not in the film. This suggests issues with factual accuracy and extraneous information.
GRAFT, however, generates a concise, focused response that directly addresses the question, accurately
depicting character dynamics, themes, and narrative elements. GRAFT’s response demonstrates superior
coherence, relevance, and accuracy compared to RAFT and Baseline GraphRAG.

The context retrieved by RAFT and Baseline models (RAFT and baseline RAG) shown in 6 demonstrates
a significant deficiency in relevance and specificity concerning the core aspects of the query, particularly
character relationships and overarching social themes. These models tend to retrieve information that is either
tangential or repetitive, failing to address the nuances of the query adequately. By examining the retrieved
contexts and their impact on answer quality, we see how GRAFT’s approach to capturing both global and
local relationships significantly enhances its performance. In contrast, GRAFT’s retrieved context, generated
with its community-based summarization shown in 11, exhibits a marked improvement in both relevance and
comprehensiveness. The community summary effectively identifies Barbie and Ken as pivotal entities and
delves into their evolving dynamic relationship, emphasizing themes such as mutual respect, partnership, and
the quest for individual identity. Moreover, the summary acknowledges the critical role of supporting characters
in enriching the narrative and underscores the film’s engagement with societal issues, including unrealistic
beauty standards and traditional gender roles. The global perspective is evident in its understanding of broad
social themes such as gender roles and unrealistic beauty standards. Simultaneously, the local relationships,
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particularly the dynamics between Barbie and Ken and their interactions with supporting characters, provide
depth and specificity to the response.

Figure 6: Retrieved Contexts for RAFT/Baseline and GRAFT

We see that the qualitative evaluation reveals that the GRAFT model significantly outperforms both RAFT
and Baseline GraphRAG models in generating relevant, accurate, and coherent responses to complex queries.
While RAFT struggled with coherence and relevance, and Baseline GraphRAG failed in factual accuracy
despite providing detailed information, GRAFT excelled in delivering a focused and insightful answer.

7 Conclusion

In this work, we introduced GRAFT, a novel approach that unifies Retrieval Augmented Fine-Tuning (RAFT)
with GraphRAG to address multi-hop reasoning and global query-focused summarization challenges in large
document corpora. GRAFT outperformed strong baselines, including RAG, RAFT, and GraphRAG, across
multiple automated evaluation metrics, demonstrating its effectiveness in answering both multi-hop and global
questions. However, our work has limitations. The knowledge graph construction process relies on entity and
relation extraction from a limited set of documents, potentially leading to a sparse graph that may not capture
all relevant information for certain queries. Additionally, the computational resources available during our
experiments, specifically the use of a single GPU, constrained the scale and complexity of the models we
could train and evaluate. Despite these limitations, GRAFT opens up several avenues for future research:

1. Adaptive graph construction and maintenance: Investigating techniques to dynamically update the
knowledge graph based on incoming queries could enable more targeted and efficient retrieval. This
could involve developing algorithms to identify and incorporate relevant new information from the
document corpus or external sources, ensuring the graph remains up-to-date and comprehensive,
storing only a subgraph at a time as communities are extracted and embedded dynamically.

2. Explanation generation using graph reasoning: Enhancing GRAFT with the ability to generate
human-readable explanations for its answers by leveraging the graph structure could improve the
interpretability and trustworthiness of the system. This could involve using chain-of-thought reasoning
in conjunction with citing specific relationships and nodes from the graph to provide a clear, logical
justification for the generated answers.

3. Scalability and efficiency improvements: Exploring techniques to optimize the computational effi-
ciency of GRAFT, such as distributed training, model compression, or more efficient graph traversal
algorithms, could enable its application to larger-scale datasets and more complex question answering
tasks.

By addressing these limitations and pursuing these research directions, GRAFT can be further developed into
a powerful, scalable, and interpretable question answering system capable of tackling complex reasoning tasks
over large textual corpora.
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8 Ethics Statement

8.1 Ethical Challenge 1: Bias and Fairness in Knowledge Representation

One significant ethical challenge in this project is the potential for bias in the knowledge representations
embedded within the GRAFT and RAFT models. These biases can arise from the underlying data sources, such
as Wikipedia articles and community summaries, which may reflect societal prejudices and historical inequities.
For instance, if certain topics or perspectives are underrepresented or misrepresented in the knowledge graph
or the retrieved text, the model’s outputs might perpetuate these biases, leading to unfair or skewed answers.
This issue is particularly pertinent in our project, as the goal is to generate questions and answers that require
holistic knowledge, which should ideally be comprehensive and unbiased.

Mitigation Strategy: To mitigate this risk, one strategy is to implement bias detection and correction
mechanisms within the model’s training and inference pipeline. This could involve using fairness-aware
algorithms that detect and adjust for biased representations in the data. Additionally, regular audits of the data
sources and the model’s outputs by a diverse team of experts can help identify and rectify biases. Policies
mandating transparency in the data collection and model training processes, as well as the inclusion of diverse
perspectives, can also help mitigate bias and ensure fairer outcomes.

8.2 Ethical Challenge 2: Privacy Concerns with Data Usage

Another ethical concern involves privacy issues related to the data used for training and inference. Given that
the project utilizes extensive data from Wikipedia articles and community summaries, there is a possibility that
sensitive information about individuals could be inadvertently included in the knowledge graph or retrieved
chunks. This raises significant privacy concerns, as the inclusion and potential dissemination of personal data
could violate individuals’ privacy rights.

Mitigation Strategy: To address this risk, it is crucial to implement rigorous data anonymization and privacy-
preserving techniques throughout the data processing pipeline. This includes removing or obfuscating any
personally identifiable information (PII) from the data before it is used for training or inference. Additionally,
adhering to data privacy regulations, such as GDPR, and conducting regular privacy impact assessments can
help ensure that the project complies with legal and ethical standards for data usage. Clear documentation and
transparency about the data sources and processing methods can further enhance trust and accountability.
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A Appendix

A.1 Embedding Plots Analysis

To gain insights into the performance of our models on global and non-global questions, we analyzed the
embedding space visualizations 8.

Figure 7: Embedding Plot with RAFT and GRAFT answer embeddings

The embedding plot in Figure 8 provides a visual representation of the embeddings generated by the RAFT
and GRAFT models for global and non-global questions. One notable observation from the embedding
plot is the presence of a distinct cluster of red crosses (representing GRAFT embeddings for non-global
questions) in the lower-left quadrant. This cluster appears to be relatively compact and well-separated from
the other embeddings, suggesting that the GRAFT model generates embeddings with similar characteristics
for non-global questions. In contrast, the blue crosses (RAFT embeddings for global questions) are more
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dispersed and scattered across the embedding space, indicating a higher degree of diversity in the generated
embeddings. The compact clustering of GRAFT embeddings for non-global questions could be attributed to
the model’s ability to effectively capture and represent the relevant information from the source documents,
resulting in more accurate and consistent embeddings. However, for global questions, while the GRAFT model
still achieves the highest scores on most metrics, the RAFT embeddings (blue crosses) are more dispersed
in the embedding space. This dispersion may indicate that the RAFT model struggles to generate consistent
and coherent embeddings for global questions, which require a broader understanding of the entire document
corpus.

Figure 8: Embedding Plot with RAFT and GRAFT answer embeddings

The embedding plot provides a visual representation of the embeddings generated by the RAFT and GRAFT
models for questions across the three different topics: "Tortured Poets Department," "Barbie," and "Oppen-
heimer." We still observe a distinct cluster of red crosses (representing GRAFT embeddings for "Barbie") in
the lower-left quadrant, suggesting GRAFT generates embeddings with similar characteristics for "Barbie." In
contrast, there is a higher variation in the representation of the blue crosses (RAFT embeddings for "Barbie").
Therefore, GRAFT is able to outperform RAFT when it comes to the accuracy and consistency of the em-
beddings. For "Tortured Poets Department," the RAFT embeddings (blue circles) are tightly clustered in the
top right, showing consistency, whereas the GRAFT embeddings (red circles) display a similar pattern but
with slight variation. This suggests both models are effective for this topic but with some nuanced differences.
Regarding "Oppenheimer," the embeddings are more spread out across the embedding space. Both RAFT
(blue stars) and GRAFT (red stars) exhibit some clustering but with notable dispersion, especially for RAFT.
This dispersion may indicate that the RAFT model struggles to generate consistent and coherent embeddings
for "Oppenheimer," which may require a broader understanding of the topic. In summary, while GRAFT
demonstrates a tendency to produce more compact and consistent embeddings, RAFT shows a higher degree
of dispersion.
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A.2 Examples of Global Questions

Figure 9: Example of Global Questions for Different Topics

Figure 10: Leiden Extracted Community to Generated Summary
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A.3 Community Summary from Extracted Community in Analysis Example

Figure 11: Community Summary from Leiden Extracted Community for "How do the chemistry and relation-
ships in the Barbie film contribute to its narrative?"

A.4 RAFT and GRAFT performance comparison

Figure 12: GRAFT outperforms RAFT on all metrics

14


	Key Information to include
	Introduction
	Related Work
	RAG and Its Current Limitations
	Advanced RAG Techniques

	Approach
	RAFT-inspired Finetuning on Multi-Hop Reasoning Task
	GraphRAG

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Qualitative Evaluation

	Conclusion
	Ethics Statement
	Ethical Challenge 1: Bias and Fairness in Knowledge Representation
	Ethical Challenge 2: Privacy Concerns with Data Usage

	Appendix
	Embedding Plots Analysis
	Examples of Global Questions
	Community Summary from Extracted Community in Analysis Example
	RAFT and GRAFT performance comparison


