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Abstract

Are Large Language Models stochastic parrots that recite the most probable answer, or do
they learn representations of grounded structures in the real world to answer your questions
well? In this study, we investigate the claim that LLMs learn and linearly encode models of
the world with a case study in colors. Guided by a series of falsifiable hypotheses, we perform
a series of baselines and controlled experiments to discover how the quality of representations
varies with language, model, context, and fine-tuning.
We find that English contextual embeddings produced by LLMs do not meaningfully out-
perform the glove-wiki-gigaword-300 baseline for smaller models (7 to 14 billion parameter),
and that LLMs consistently possess better representations for English color terms, even for a
model trained predominantly on Japanese. Nevertheless, alignment of representations with
the underlying color space improves with both finetuning and parameter size, and multilin-
gual LLMs could be valuable tools for analyzing crosslingual encoding of perceptions. To aid
this, we introduce a color-mapping experiment that visualizes languages’ color representa-
tion, and offer our analyses and interpretations from linguistic anthropology perspectives.
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nullus enim color est omnino materiai
corporibus, neque par rebus neque denique dispar
in quae corpora si nullus tibi forte videtur
posse animi iniectus fieri, procul avius erras

for the bodies of matter have no colour at all
neither like things nor again unlike them
but if by chance you think that the mind cannot
project itself into these bodies, you wander far astray

Lucretius, De Rerum Natura 2.737. Trans. Bailey (1921)2 Introduction

Large Language Models (LLMs) demonstrate notable capabilities in natural language understanding. How-
ever, the extent to which they grasp the meaning of the language they process remains under heavy scrutiny
(i.e., the “stochastic parrot” argument). Critics often argue that LLMs lack both symbolic structure and
grounding, and on the latter point that the language modeling task is inadequate for learning language
representation as it relates to the real, physical world (Pavlick, 2023), (Bender and Koller, 2020).
While this debate is deeply philosophical and depends on the type of semantics being discussed1, recent
research exploring the connections between LLMs’ hidden states and grounded structures—such as color,
directions, time, or geographic positions—has yielded compelling findings. Although no formal proof yet con-
firms that the representations learned by LLMs are isomorphic to these structures, evidence of robust, often

1In the final lecture of CS 224N Spr 2024 titled “NLP, Linguistics, and Philosophy”, Professor Manning seems to
reject both points, stating that the brain is a neural NLP system evidently capable of processing symbolic systems,
and though the “real world” and classic grounded meaning is privileged, it is not a superset of meaning derived from
language context, per the “shehnai” example.
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linear mappings and strong correlations have led to claims such as that “LLMs learn linear representations
[...] of the real world and possess basic ingredients of a world model” (Gurnee and Tegmark, 2024). This
field of investigation is emerging and rapidly evolving; the studies within it, noted for their novelty, have also
faced criticism for making broad generalizations across different models and data (Reviewers, 2024), lacking
baseline comparisons (Ruder, 2023), and conducting analyses in English only.
This project aims to address the aforementioned concerns. By setting up various baselines and a series of
falsifiable hypotheses, we aim to impartially analyze the results from controlled, multilingual experiments
relate the results from prior studies to informative baselines. Indeed somewhat disappointingly, our results
show that LLM color representations (namely contextual embeddings) do not meaningfully outperform pre-
trained GloVe embeddings in correlation with the underlying physics-based color space, except for the largest
and latest Llama3-70B-Instruct model. Nevertheless, they provide the means to easily acquire cross-lingual
contextual representations that enable novel analysis of culture and language usage.
Team contributions: Equal. Pinlin [Calvin] Xu mainly worked on compiling data, prototyping experiments,
finetuning Llama3, and visualizing color mapping; Garbo Chung mainly worked on extracting contextual
color representations from models, and performing grounding evaluation experiments.

3 Related Work

3.1 Large Language Models’ Grounded Representations

In the pioneering work Abdou et al. (2021), the authors applied BERT (Devlin et al., 2019) to analyze
how 51 American English speakers named Munsell color chips using monolexemic color terms. Using both
Representation Similarity Analysis (RSA) (Kriegeskorte et al., 2008) and the fitness of LASSO-regularized
linear regression, they assessed the alignment between 1024-dimensional contextual embeddings for color
terms and 3D CIELAB color coordinates.
Subsequent research have expanded the evaluation to more diverse structures, such as spatial and temporal
coordinates (Gurnee and Tegmark, 2024), directions (Patel and Pavlick, 2022), or more abstractly object
properties (Forbes et al., 2019) and falsehood (Marks and Tegmark, 2023). They have generally focused on
decoder-only autoregressive language models, likely motivated by both the increased prominence of LLMs
and the usage of specialized research models like Pythia (Biderman et al., 2023) to explore additional model
sizes and training dynamics.
Gurnee and Tegmark (2024) provides the most comprehensive testing to date, probing on various combi-
nations of model sizes and hidden layers. Significant correlation, increasing with layer depth, is reported,
and deemed linear as nonlinear mappings like MLPs show minimal improvement. Some reviewers, how-
ever, find their results not particularly surprising: pretrained word embeddings such as Word2Vec (Mikolov
et al., 2013b) and GloVe (Pennington et al., 2014) have long demonstrated linear algebraic structures of
word meanings; and still earlier Louwerse and Zwaan (2009) reported similarly extracting longitude and
latitude coordinates from Latent Semantic Analysis (LSA) embeddings, yet no traditional baselines were not
compared against (Ruder, 2023).
Besides such probing studies, research rooted in cognitive science has introduced “behavioral” studies that
recover representations from LLMs’output tokens: Kawakita et al. (2023) measures response pattern similar-
ities and Zhu et al. (2024) applies established sampling techniques such as Markov Chain Monte Carlo with
People (MCMCP) on GPT-4. Nevertheless the prospect of identifying structures directly from the hidden
state remains compelling, with emerging research like (Alper et al., 2023) focusing on the effects of vision
and language pretraining; notably Merullo et al. (2023) has shown linear mappings between representations
learned by vision-only and text-only models.

3.2 Crosslingual Embeddings and Alignment

Aligned cross-lingual representations in a joint embedding space are crucial for NLP tasks like translation
and retrieval, and for language transfer learning (Ruder et al., 2019). As pioneered by Mikolov et al. (2013a),
assuming embedding spaces are approximately isomorphic across languages, term translation can be accom-
plished by mapping monolingual embeddings to a shared space using orthogonal transformations and finding
the nearest neighbor in the target language via cosine similarity (Søgaard et al., 2018) (Kementchedjhieva
et al., 2018). While traditional approaches required a cross-lingual reference (e.g., parallel corpus) to “anchor”
alignment, increasingly sophisticated methods such as Conneau et al. (2018) moved towards increasingly un-
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supervised processes that used or jointly trained embeddings from Skip-Gram Negative Sampling (SGNS)
before the advent of LLMs. Contextual embeddings, such as those from ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019), were found to consistently outperform previous state-of-the-art methods post
alignment (Schuster et al., 2019; Wang et al., 2019). It is further hoped that LLMs, trained on unprece-
dented amounts of multilingual data, will enhance the analysis of cross-cultural encoding of visual, spatial,
and temporal perceptions (Ruder, 2023).

4 Approach

Consider the general architecture of transformer-based language models: input tokens are converted to
vectors in the initial embedding layer, combined with positional embeddings, and transformed over successive
attention blocks until they are finally converted back to tokens (Radford and Narasimhan, 2018). We consider
the contextual embeddings generated by the language model to be the final vectors prior to the output layer.
Our main task is investigating the alignment between high-dimensional embeddings of color terms and
ground truth color coordinates in a specific color space (e.g., RGB, CIELABS, CMYK, etc.) Given a
concrete scenario where:

• X ∈ RN×p as the input word embeddings, where p = 4096 for most models.
• y ∈ NN×q as the (clamped) output RGB color values, where q = 3 for most color spaces.

We introduce three evaluation metrics. First, we perform regression analysis via probing, introduced by
Alain and Bengio (2016) and a consistent metric in prior literature since Abdou et al. (2021). We train a
linear mapping from the embedding space in E4096 to the RGB color space in E3 with the following Elastic
Net regularization where

L(W, b) = 1

N

N∑
i=1

∥y(i) − ŷ(i)∥22 + λ1∥W∥1 + λ2∥W∥22 (1)

• N = 2054 · 0.8 is the number of training samples from the main English-Chinese bilingual dataset
compiled.

• λ1 and λ2 are regularization parameters for L1 and L2 regularization, obtained via grid-search and
leave-out cross-validation with at most 3000 iterations. W ∈ R3×4096, b ∈ R3, ŷ ∈ R3

Regression fitness, namely the coefficient of determination R2 = 1−
∑N

i=1 ∥y(i)−ŷ(i)∥2
2∑N

i=1 ∥y(i)−ȳ∥2
2

, is reported on alignment.
Additional metrics are density ( |{wi ̸=0}|

|W| ) and mean regression error in terms of normalized Euclidean distance
defined below

dnorm(cactual, cpredicted) =
∥cactual − cpredicted∥2
∥cwhite − cblack∥2

(2)

where ∥cwhite − cblack∥2 =
√
2552 · 3 ≈ 441.673 to help interpret the relative difference.

Second, we conduct Canonical-Correlation Analysis (CCA) to identify linear combinations of X and y (specif-
ically the canonical random variables aTk X and bT

k y, where ak ∈ Rp and bk ∈ Rq are coefficients known as
the canonical vectors) that maximize the correlation ρ = corr(aTk X, bT

k y) (Zhuang et al., 2020).

However, directly applying CCA presents issues: consider the row-space of the data matrix Z = [X, y]T ∈
RN×(p+q). This system becomes overdetermined if p+ q ≥ N , which holds due to large model hidden sizes
and limited data, and we observed some canonical correlations are always 1 (Shokouhi, 2023). To address
this, dimensionality reduction is applied, using the linear method of Principal Component Analysis (PCA) or
the nonlinear method of Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018),
both commonly used for embedding visualization and analysis. Thus given

(Xc, yc) = CCA(Xreduced = [(PCA or UMAP)(X, q)], y, q) (3)
we report the canonical correlations ρi = corr(Xc[:, i], yc[:, i]) denoting the Pearson correlation coefficient.

4.1 Color Mapping Visualization

Motivated by previous research in crosslingual embedding alignment, we introduce a pipeline to visualize
differences in pairwise color representations, as shown in Figure 1. Given color term embeddings from a
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LLM in two languages, we align them to a joint space using Procrustes analysis, involving solving for an
orthogonal matrix that optimally maps the subset embeddings of Basic Color Terms, as identified by the
World Color Survey, from one language to another (note that this system is also highly underdetermined)
(Kay and Cook, 2014). The three basic colors black, white, and red are used in final results.
We hypothesize that if LLMs learn robust and accurate color representations across multiple languages,
such representations after alignment should be similar, aside from random training variances and cultural
nuances inherent to the languages and corpora used. While color values closely matching the ground truth
can be recovered from the embeddings of either language, when we apply a regressor fitted to one language’
s embeddings onto another, we observe significant differences. These differences alter the perception and
mood of an image when the color mapping is applied, though their interpretation is difficult and subtle.
We do not reuse any existing codebase, other than ML libraries including HuggingFace Transformers (Wolf
et al., 2020), Pytorch (Paszke et al., 2019), scikit-learn (Pedregosa et al., 2011), SciPy (Virtanen et al., 2020),
gensim (Řehůřek and Sojka, 2010) to conduct original experiments.

Figure 1: Color Mapping Visualization Pipeline5 Experiments

5.1 Data

We have collected a total of 17566 named colors and their definition in some color space(s) from various
sources. A valuable subset of them is bilingual: for example, Table 1 a color entry defined in the RAL
Classic color standard (Europe, 2024). Additionally, Table 2 shows the rich natural language descriptions
we collected for traditional Japanese and Chinese colors detailing their composition, cultural impression and
usage, etc., that support our cultural analysis experiments.

English Chinese Hex R G B H◦ S% L% L*% a*% b*% C% M% Y% K%
Saffron yellow 藏红花黄色 #F6A950 246 169 80 33.75◦ 84.21 62.75 75.183 20.633 55.581 0 29 67 6

Table 1: Example: RAL 1017 Saffron yellow; compiled from (Wikipedia contributors, 2023)

Kanji Kana Romaji Hex C M Y K Description
茜色 あかねいろ Akane-iro #B7282E 0 78 75 28 茜色（あかねいろ）とは、茜草の根で染めた暗い赤

色のことです。夕暮れ時の空の形容などに良く用い
られることで知られています...

Table 2: Example traditional Japanese color compiled from (koka); translation of the description such as:
“‘Akane-iro’ refers to a dark red color dyed with the roots of rubia cordifolia (Indian madder). It is well
known for being used to describe the color of the sky at dusk ... (continued)”

This data serve as a basis for our probing and embedding analysis experiments. Preprocessing is done
to sanitize, deduplicate, remove nondescriptive names (such as ”PMS 1485” from the Pantone Matching
System) and fix errors from larger lists such as Krzywinski (2017). For most experiments, a high-quality
English-Chinese bilingual subset with 2054 examples is used, and other usage will be reported per-case.
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5.2 Experimental Details

The large language models we investigate are Mistral-7B-Instruct-v0.2 (Team), Llama-3-8B-Instruct (4bit
quantized version from unsloth (2024)), Llama-3-70B-Instruct (AI@Meta, 2024), and Fugaku-LLM-13b-
instruct that is specialized in Japanese (Fujitsu, 2024). Their embedding dimensions are 4096, 4096, 8192,
and 5184, respectively, with vocabulary sizes of respectively 32000, 128256, 128256, 51200.
Parameter-Efficient Fine Tuning (PEFT) is performed on Llama-3-8B-Instruct to evaluate changes in repre-
sentation, where pretrained weight matrices are updated using Low-Rank Approximation (LoRA) to reduce
the number of weight updates (Hu et al., 2021). During full finetuning, the model is initialized to pre-trained
weights Φ0 and updated to Φ0 +∆Φ by maximizing some conditional language modeling objective

max
Φ

∑
(x,y)∈Z

|y|∑
t=1

logPΦ(yt|x, y<t) (4)

Instead of optimizing for ∆Φ directly, whose dimensionality is equal to |Φ0|, we compute a task-specific
∆Φ(Θ) parameterized by a smaller Θ. As |Θ| ≪ |Φ0| and Φ = Φ0 +∆Φ(Θ), the objective changes to

max
Θ

∑
(x,y)∈Z

|y|∑
t=1

logPΦ0+∆Φ(Θ)(yt|x, y<t) (5)

Consider ∆W ⊆ ∆Φ is represented as a low-rank decomposition ∆W = BA, where B ∈ Rd×r, A ∈ Rr×k

are trained on and r ≪ min(d, k). The update to the some pretrained matrix W0 ∈ Rd×k ⊆ Φ0 is then
W0+

α
r∆W = W0+

α
rBA, which include q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj

in our setup. We set the hyperparameters as rank = alpha = 16, no dropout, a learning rate of 2 × 10−4,
and train for 3 epochs on 449 examples (training loss in Figure 6).
Experiments were conducted with compute available to us, including Tesla T4, TPU v2 instances via Google
Colab, and an A100 (40GB) GPU instance from modal.com. The temperature for all embedding experiments
was set to e−9, using controlled contexts similar to the one described in 5.2.1, with mean-pooling applied to
the final hidden layer. Some experiments were cut short due to Colab disconnects.

5.2.1 Evaluation Method & Retrieval Baseline Evaluation

Evaluation metrics used are discussed in depth in Section 4 Approach. Before investigating whether
LLMs encode representations of grounded structures, we first verify if they act effectively as stochas-
tic parrots, absent in previous studies. We perform a simple retrieval baseline for a small set of
basic, well-defined colors in the HTML, CSS, and VGA standards ((Raggett et al., 1999)) with a
structured prompt: [INST] What is the RGB value of the following web color [whose name is in
[Chinese, Japanese]]: [NAME OF COLOR]? [/INST]

5.3 Results
5.3.1 Retrieval Baseline Results
We find that while Mistral-7B-Instruct-
v0.2 performs almost flawlessly on this
task when being asked in English, it ap-
pears quite undertrained in non-English
languages, such as not knowing ”fuchsia”
in Chinese and responding with a color
identical to purple. However, certain cul-
tural factors are also evident. For exam-
ple, the Japanese response to the color blue
is a mixture of blue-green, due to a well-
documented phenomenon that also leads to
Japan still having some blue traffic lights
(Iijima et al., 1982).

Figure 2: The 16 basic W3C web colors in different languages
(Jaffer), and Mistral 7B’s answers compared to definition.

5.3.2 Representation Probing Results and Analysis

As shown in Table 3, the regression analysis and canonical correlation results matched our expectations,
showing that randomly permuted embeddings correlate poorly with their original colors, confirming that
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Configuration R2 (out of sample) d̄norm Weight Density ρ⃗PCA

GloVe Embeddings 0.5952 0.0915 0.13 [0.482, 0.154, 0.081]
Label-Permuted Embeddings (×2) -0.3735, -0.4480 0.1699, 0.1603 0.80, 0.89 [0.200, 0.072, 0.006], [0.198, 0.120, 0.05]
Mistral English (Out of Context) 0.5192 0.1124 0.41 [0.250, 0.102, 0.036]
Mistral English (In Context) 0.5969 0.0980 0.21 [0.320, 0.069, 0.026]
Mistral English (In Context, Term Only) 0.5490 0.1037 0.73 [0.288, 0.143, 0.007]
Mistral Chinese (Out of Context) 0.3894 0.1128 0.69 [0.245, 0.135, 0.031]
Mistral Chinese (In Context) 0.4343 0.1044 0.49 [0.245, 0.135, 0.031]
Human (Author 1) 0.5630 0.1356 N/A N/A
Human (Author 2) -0.0299 0.2219 N/A N/A

Table 3: Baseline Results

linear regression does not easily overfit and the coefficient of determination is recommended for assessing
the alignment between embedding and color spaces. Despite low canonical correlations due to substantial
dimensionality-reduction of either PCA or UMAP, relative comparisons can still be made.
As expected in context embeddings display better alignment. However, the pretrained glove-wiki-gigaword-
300 embeddings perform favorably compared to even in-context English embeddings obtained from Mistral-
7B-Instruct-v0.2 with minimal overfitting, prompting us to further investigate whether LLMs truly have
significantly more robust and accurate representations of grounded structures compared to prior arts.
Additionally, both authors tested the regression baseline by selecting colors on an RGB wheel for 10 random
bilingual entries (see Table A.1 in Appendix). Neither author matched the performance of the regression on
GloVe embeddings, showing the inherent ambiguity of (some admittedly obscure) color names.
To assess whether LLMs exhibit a more grounded understanding of color in specific languages,
we analyzed color embeddings from English, Chinese, and Japanese extracted from Llama-3-8b-Instruct-
bnb-4bit. Continuing the trend from the baseline, we found that both the fitness of the regressor mapping
embeddings to true RGB values and the canonical correlations were lower for Chinese and significantly lower
for Japanese compared to English, suggesting Llama3 may have better understanding of colors in English.

Configuration R2 dnorm Weight Density ρ⃗PCA ρ⃗UMAP

English Embeddings 0.5544 0.0988 0.92 [0.488, 0.153, 0.127] [0.346, 0.217, 0.012]
Chinese Embeddings 0.4875 0.1054 0.92 [0.217, 0.181, 0.014] [0.269, 0.130, 0.025]
Japanese Embeddings 0.2725 0.1325 0.62 [0.213, 0.143, 0.065] [0.243, 0.089, 0.038]

Table 4: Llama3 Embedding Results

To assess whether a model trained predominantly in a non-English language would possess su-
perior representations in that language, we analyzed the Japanese-trained Fugaku-LLM-13B-instruct,
known for its training on a proprietary dataset of 380 billion tokens, 60% of which being Japanese (Fujitsu,
2024). Surprisingly, Japanese color embeddings from Fugaku showed similar or worse correlations and fit-
ness compared to its English embeddings, and even compared to Japanese embeddings from Llama3. This
suggests that the trend of LLMs having a better grounded understanding of English color terms is more
persistent than we conjectured.

Configuration R2 dnorm Weight Density ρ⃗PCA ρ⃗UMAP

English Embeddings 0.5994 0.0930 0.68 [0.329, 0.149, 0.055] [0.317, 0.173, 0.020]
Japanese Embeddings 0.2701 0.1237 0.86 [0.158, 0.041, 0.002] [0.229, 0.124, 0.060]

Table 5: Fugaku-LLM Embedding Results

To assess if finetuning improves LLMs’color representation alignment, we finetuned Llama3 on
a dataset described in Table 2, consisting of Japanese cultural colors with extensive descriptions of their
physical appearance and cultural usage. The model was tasked to predict their RGB definitions.
The finetuned model showed a slight improvement (bolded) in regressor fitness scores for both Japanese and
Chinese embeddings compared to the original Llama3 model, with correlations also slightly higher or similar.
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These modest gains, achieved over three epochs with about 400 colors, suggest that more extensive training
could lead to significant improvements in understanding foreign cultural colors, as positive scaling with both
training and parameter count has been reported by (Gurnee and Tegmark, 2024).

Configuration R2 dnorm Weight Density ρ⃗PCA ρ⃗UMAP

English Embeddings 0.5544 0.0980 0.92 [0.585, 0.140, 0.101] [0.437, 0.235, 0.037]
Chinese Embeddings 0.5049 0.1053 0.84 [0.299, 0.182, 0.001] [0.196, 0.110, 0.001]
Japanese Embeddings 0.2813 0.1301 0.82 [0.238, 0.188, 0.058] [0.332, 0.260, 0.041]

Table 6: Finetuned Llama3 Embedding Results

To assess if representation quality scales with model size, we analyzed English embeddings from
Llama-3-70B-Instruct. This model outperformed our finetuned 8B model and finally achieved a higher regres-
sor fitness score than the glove-wiki-gigaword-300 baseline. Although a comprehensive series of experiments
was not feasible due to constraints on time and computing resources, these results seem to support the scaling
laws reported for Llama2 and Pythia models across various sizes Gurnee and Tegmark (2024).

Configuration R2 dnorm Weight Density ρ⃗PCA ρ⃗UMAP

English Embeddings 0.6257 0.0915 0.65 [0.352, 0.082, 0.035] [0.219, 0.022, 0.003]

Table 7: Llama3-70b Embedding Results
6 Analysis

Across our evaluation results discussed above, we observed that English color embeddings from all models
evaluated to both higher fitness and correlation scores compared to the Chinese color embeddings, and
significantly surpassed Japanese color embeddings. From our evaluation of Fugaku-LLM, we established that
if it is indeed true that the model is trained on majority Japanese text, then this disparity cannot simply be
attributed to the dominance of English in training data. We further hypothesize that a substantial number
of Japanese color terms are English transliterations may be the reason, and recognize that Fugaku-LLM is
undertrained compared to other models (billions of tokens instead of trillions).

Figure 3: Result of linear mappings from embedding space to color space and when the mapping of one
language is applied to another aligned embeddings; image credits: visible spectrum (Commons, 2024), HSV
gradient (Commons, 2023b), The Fighting Temeraire, JMW Turner, (Commons, 2022), Beijing (Steinmetz)
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Figure 3 shows select color mapping visualizations obtained (see Apppendix A.4). We observe that warmer
colors are more accurately recovered from their representations in either English or Chinese. A greater
range of green terms is recovered as either more yellow or blue hues, while cyan itself is mapped to a dark
green. This finding is consistent with the observations made by Abdou et al. (2021) and supports the
anthropological perspective on color naming articulated by Gibson et al. (2017): “Across languages, from
the hunter-gatherer Tsimane’ people of the Amazon to students in Boston, warm colors are communicated
more efficiently than cool colors.” Additionally, V-shaped banding artifacts are noticeable along lines of equal
hue when the mapping is applied to a Hue-Saturation-Value (HSV) gradient, suggesting that the mapping
primarily associates representations with specific hues, defined as the attributes of human visual perception
that make an area seem similar to (a spectrum of) primary colors in a closed ring (Fairchild, 2013).
When a mapping originally fitted on aligned Chinese color embeddings is applied to aligned English embed-
dings, the resulting image features a cooler, more subdued palette, with more blue and gray tones, creating a
subjectively more calm and serene atmosphere. Concomitantly, a mapping fitted on aligned English embed-
dings retrieves a more intense, warm palette from aligned Chinese embeddings, dominated by strong pinks,
reds, and purples, creating a subjectively more dramatic and vibrant appearance.
Satisfactorily and precisely interpreting these visualized mapping results in linguistic and anthropological
context is likely beyond the scope of this study. As hypothesized by Pavlick (2023), from a Conceptual
Role Semantics (CRS) perspective, as LLM representations of color terms should be influenced by aspects
conceptual role other than appearance despite our controlled context. As an example, the English mapping
applied on Chinese color embeddings revealed that Chinese embeddings generally captured warmer color
tones compared to English embeddings. A naive interpretation of this result may be that red is an auspicious
color in Chinese culture, associated with vitality, celebration, and good fortune, such that red shows gain and
green shows loss in Chinese stock exchanges and in many Asian countries, contrasting English usage where it
is associated with more negative connotations. It could be said that a color transformation based on English
interpretations of Chinese color terms produced a palette with a noticeable red shift, possibly reflective of a
different emphasis or typical range of color usage in Chinese visual culture compared to English.
We additionally observe that the canonical correlation score for the ”Red” component was consistently the
highest, followed by ”Green” and then ”Blue”. While this result could be explained by the evolutionary
acquisition sequence of Basic Color Terms by cultures as conducted by the World Color Survey, where red
precedes the the separation of green from blue (stage 1: “black”, “white”, stage 2: “red”, stage 3: “blue-green”
, stage 4: “yellow”, and lastly distinction between “blue”and “green”in stage 5 (King, 2005)), we note that the
randomly label-permuted embeddings also display this phenomenon, suggesting it stems from experimental
setup. We believe this again highlights the importance of baseline comparisons in interpreting results.

7 Conclusion

Our investigation of Large Language Models’ grounded representations extends a series of recently published
studies by addressing gaps in multilingual analysis and baseline comparisons. The LLMs we examined
consistently showed a better understanding of ground truths like color in English compared to in Chinese and
Japanese, regardless of the model type and majority language in training data. However, improved alignment
of color representations is achievable via targeted fine-tuning and model size increase. We additionally present
a visualization for the qualitative analysis of varying cultural perceptions of the same underlying color space.
Our baselines, especially the GloVe baseline, suggest that traditional methods can also represent knowledge
along the lines of symbolic structures defined by humans, and studies such as (Merullo et al., 2024) have
begun to investigate the underlying mechanisms in LLMs. The reverse direction of integrating different
modalities of data as embeddings is also exciting, with recent speculation that GPT-4o embeds images
“directly into the transformer’s semantic vector space” using a CNN architecture (Looney, 2024).
Our study’s primary limitation is the constrained availability of cross-lingual color naming data, affecting
the quality of our analysis as well as the accuracy of our visualizations that employ interpolation with
inverse square falloff for unsampled input. The task of predicting color definitions from names is inherently
challenging and ambiguous, as evidenced by the human baselines, and was chosen to diverge from (Abdou
et al., 2021) by exploring a broader range of color terms instead of limiting the study to 51 monolexemic
terms. For future work, we propose to augment our dataset and pool color naming data from geographically
adjacent cultures, prompted by the observed improvements in Chinese color perception following finetuning
in Japanese. Additionally, we aim to investigate the potential impacts of multimodal language models,
focusing on how vision and language pretraining influence representations.

8



8 Ethics Statement

Given our project’s focus on NLP and cross-cultural differences in color representation, we recognize the
risk of cultural oversimplification. We use language models to infer about cultural color perceptions could
inadvertently reinforce stereotypes or over-generalizations. Another risk is that our conclusions about the
differences in cultural understanding of color may potentially be misused to advertise and exacerbate cultural
division and intolerance. We are aware that the world color survey (Kay and Cook, 2014), as well as the Basic
Color Terms theory proposed by Brent Berlin and Paul Kay, has been misused to advance a developmental
hierarchy between cultures with biased “sociobiological and evolutionary-psychology implications” (Vox,
2017) (Saunders, 2000).
To address these concerns, we hereby emphasize the limitations and goals of our project. Our objective is to
explore diverse cultural aspects to enhance cultural appreciation, not to provide a comprehensive overview of
any culture. We have taken great care to maintain the cultural authenticity and accuracy of our dataset to
avoid incorrect interpretations; both authors are bilingual in English and Chinese, with Author 1 additionally
speaking Japanese. Our reproducible results from color mapping experiments should be viewed as only one
of many possible ways to visualize the data and one of many potential insights, and our subjective analyses
are limited to mood and aesthetics. We strictly intend these results for academic or cultural appreciation
purposes and firmly oppose any misuse that supports discriminatory viewpoints.
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A Appendix (optional)

A.1 Human Color Prediction Baseline

The colors predicted by the two authors from bilingual color names as reported in the baselines in Table 3.

English Chinese Definition Author 1 Author 2
Marble Grey 大理石灰
Titanite Yellow 钛黄
Jade Mussel Green 翡翠贻贝绿
Deep Sea Blue 深海蓝
Royal Purple 皇家紫
Amethyst Light Violet 紫水晶浅紫
Coral Pink 珊瑚粉
Ember Red 灰烬红
Mango Orange 芒果橙
Rust Brown 锈棕

A.2 Linear Mapping Performance

Example performance of regressor trained on Llama 3 8B:

Figure 4: Examples from test set in RGB color space; points on the left are colored by actual definition;
points on the right colored by prediction

Figure 5: Regression performance on test set per channel
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A.3 Finetuning Training Loss Graph

Figure 6: Loss over steps (3 epochs in total) of finetuning Llama3 8b 4bit
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A.4 Additional Color Mapping Visualization

A.5 Chroma, Hue, Lightness (LCH) Color Gradient, (Commons, 2023c)

Figure 7: Chroma, Hue, Light-
ness (LCH) Color Gradient, (Com-
mons, 2023c)

Figure 8: LCH Color Gradient,
English Mapping of English Color
Representations

Figure 9: LCH Color Gradient,
Chinese Mapping of Chinese Color
Representations

Figure 10: LCH Color Gradient,
English Mapping of Chinese Color
Representations

Figure 11: LCH Color Gradient,
Chinese Mapping of English Color
Representations
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A.6 Palace of Westminster from the dome on Methodist Central Hall, (Commons, 2023d)

Figure 12: Palace of Westminster
from the dome on Methodist Cen-
tral Hall, (Commons, 2023d)

Figure 13: Photo of London, En-
glish Mapping of English Represen-
tations

Figure 14: Photo of London, Chi-
nese Mapping of Chinese Represen-
tations

Figure 15: Photo of London, En-
glish Mapping of Chinese Repre-
sentations

Figure 16: Photo of London, Chi-
nese Mapping of English Represen-
tations

A.7 JMW Turner, The Fighting Temeraire, (Commons, 2022)

Figure 17: The Fighting Temeraire, JMW Turner
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Figure 18: The Fighting Temeraire, JMW Turner, English Mapping of Japanese Color Representations

Figure 19: The Fighting Temeraire, JMW Turner, Japanese Mapping of English Color Representations

A.7.1 Albert Bierstadt, Among the Sierra Nevada, California

Figure 20: Albert Bierstadt, Among the Sierra Nevada, California (Commons, 2023a)
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Figure 21: Albert Bierstadt, Among the Sierra Nevada, California (Commons, 2023a), English Mapping of
English Color Representations

Figure 22: Albert Bierstadt, Among the Sierra Nevada, California (Commons, 2023a), Chinese Mapping of
Chinese Color Representations

Figure 23: Albert Bierstadt, Among the Sierra Nevada, California (Commons, 2023a), English Mapping of
Chinese Color Representations
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Figure 24: Albert Bierstadt, Among the Sierra Nevada, California (Commons, 2023a), Chinese Mapping of
English Color Representations
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