Lecture 5:
Backpropagation
Kevin Clark
Announcements

• Assignment 1 due Thursday, 11:59
 • You can use up to 3 late days (making it due Sunday at midnight)

• Default final project will be released February 1st
 • To help you choose which project option you want to do

• Final project proposal due February 8th
 • See website for details and inspiration
Overview Today:

• From one-layer to multi layer neural networks!

• Fully vectorized gradient computation

• The backpropagation algorithm

• (Time permitting) Class project tips
Remember: One-layer Neural Net

\[s = u^T h \]

\[h = f(Wx + b) \]

\[x \quad (\text{input}) \]

\[x = [x_{\text{museums}}, x_{\text{in}}, x_{\text{Paris}}, x_{\text{are}}, x_{\text{amazing}}] \]
Two-layer Neural Net

\[s = u^T h_2 \]

\[h_2 = f(W_2 h_1 + b_2) \]

\[h_1 = f(W_1 x + b_1) \]

\[x \quad \text{(input)} \]

\[x = [x_{\text{museums}}, x_{\text{in}}, x_{\text{Paris}}, x_{\text{are}}, x_{\text{amazing}}] \]
\[s = u^T h_3 \]

\[h_3 = f(W_3 h_2 + b_3) \]

\[h_2 = f(W_2 h_1 + b_2) \]

\[h_1 = f(W_1 x + b_1) \]

\[x \quad (\text{input}) \]

\[x = [\ x_{\text{museums}} \ x_{\text{in}} \ x_{\text{Paris}} \ x_{\text{are}} \ x_{\text{amazing}} \] \]
Why Have Multiple Layers?

- Hierarchical representations -> neural net can represent complicated features
- Better results!

<table>
<thead>
<tr>
<th># Layers</th>
<th>Machine Translation Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>23.7</td>
</tr>
<tr>
<td>4</td>
<td>25.3</td>
</tr>
<tr>
<td>8</td>
<td>25.5</td>
</tr>
</tbody>
</table>

From Transformer Network (will cover in a later lecture)
Remember: Stochastic Gradient Descent

- Update equation:

\[\theta_{\text{new}} = \theta_{\text{old}} - \alpha \nabla \theta J(\theta) \]

\(\alpha = \text{step size or learning rate} \)
Remember: Stochastic Gradient Descent

• Update equation:
 \[\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta) \]

 \(\alpha = \text{step size or learning rate} \)

• This Lecture: How do we compute \(\nabla_{\theta} J(\theta) \)?
 • By hand
 • Algorithmically (the backpropagation algorithm)
Why learn all these details about gradients?

- Modern deep learning frameworks compute gradients for you
- But why take a class on compilers or systems when they are implemented for you?
 - Understanding what is going on under the hood is useful!
- Backpropagation doesn’t always work perfectly.
 - Understanding why is crucial for debugging and improving models
 - Example in future lecture: exploding and vanishing gradients
Quickly Computing Gradients by Hand

- Review of multivariable derivatives
- Fully vectorized gradients
 - Much faster and more useful than non-vectorized gradients
 - But doing a non-vectorized gradient can be good practice, see slides in last week’s lecture for an example
 - Lecture notes cover this material in more detail
Gradients

- Given a function with 1 output and n inputs
 \[f(x) = f(x_1, x_2, \ldots, x_n) \]

- Its gradient is a vector of partial derivatives
 \[
 \frac{\partial f}{\partial x} = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right]
 \]
Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs

\[f(x) = [f_1(x_1, x_2, ..., x_n), ..., f_m(x_1, x_2, ..., x_n)] \]

• Its Jacobian is an \(m \times n \) matrix of partial derivatives

\[
\frac{\partial f}{\partial x} = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{bmatrix}
\]

\[(\frac{\partial f}{\partial x})_{ij} = \frac{\partial f_i}{\partial x_j}\]
Chain Rule For Jacobians

• For one-variable functions: multiply derivatives

 \[z = 3y \]
 \[y = x^2 \]
 \[\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = (3)(2x) = 6x \]

• For multiple variables: multiply Jacobians

 \[h = f(z) \]
 \[z = Wx + b \]
 \[\frac{\partial h}{\partial x} = \frac{\partial h}{\partial z} \frac{\partial z}{\partial x} = \ldots \]
Example Jacobian: Activation Function

\[h = f(z), \text{ what is } \frac{\partial h}{\partial z}? \quad h, z \in \mathbb{R}^n \]

\[h_i = f(z_i) \]
Example Jacobian: Activation Function

$$h = f(z), \text{ what is } \frac{\partial h}{\partial z} \text{? } \quad h, z \in \mathbb{R}^n$$

$$h_i = f(z_i)$$

Function has n outputs and n inputs -> n by n Jacobian
Example Jacobian: Activation Function

\[h = f(z), \text{ what is } \frac{\partial h}{\partial z}? \quad h, z \in \mathbb{R}^n \]

\[h_i = f(z_i) \]

\[
\left(\frac{\partial h}{\partial z} \right)_{i_j} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i) \quad \text{definition of Jacobian}
\]
Example Jacobian: Activation Function

\[h = f(z), \text{ what is } \frac{\partial h}{\partial z} ? \]

\[h_i = f(z_i) \]

\[
\begin{pmatrix}
\frac{\partial h}{\partial z}_i \\
\frac{\partial h}{\partial z}_j
\end{pmatrix}
= \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i)
\]

definition of Jacobian

\[
= \begin{cases}
 f'(z_i) & \text{if } i = j \\
 0 & \text{if otherwise}
\end{cases}
\]

regular 1-variable derivative
Example Jacobian: Activation Function

\[h = f(z) \], what is \(\frac{\partial h}{\partial z} \)?

\[h_i = f(z_i) \]

\[
\left(\frac{\partial h}{\partial z} \right)_{i,j} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i) \\
= \begin{cases}
 f'(z_i) & \text{if } i = j \\
 0 & \text{if otherwise}
\end{cases}
\]

definition of Jacobian

regular 1-variable derivative

\[
\frac{\partial h}{\partial z} = \begin{pmatrix}
 f'(z_1) & 0 \\
 0 & \ddots \\
 0 & \ddots & f'(z_n)
\end{pmatrix} = \text{diag}(f'(z))
\]
Other Jacobians

\[
\frac{\partial}{\partial x} (W x + b) = W
\]
Other Jacobians

\[\frac{\partial}{\partial x} (Wx + b) = W \]

\[\frac{\partial}{\partial b} (Wx + b) = I \] (Identity matrix)
Other Jacobians

\[\frac{\partial}{\partial x} (Wx + b) = W \]

\[\frac{\partial}{\partial b} (Wx + b) = I \quad \text{(Identity matrix)} \]

\[\frac{\partial}{\partial u} (u^T h) = h^T \]
Other Jacobians

\[
\frac{\partial}{\partial x} (Wx + b) = W
\]
\[
\frac{\partial}{\partial b} (Wx + b) = I \quad \text{(Identity matrix)}
\]
\[
\frac{\partial}{\partial u} (u^T h) = h^T
\]

- Compute these at home for practice!
- Check your answers with the lecture notes
Back to Neural Nets!

\[s = u^T h \]

\[h = f(Wx + b) \]

\[x \quad \text{(input)} \]

\[x = [x_{\text{museums}} \ x_{\text{in}} \ x_{\text{Paris}} \ x_{\text{are}} \ x_{\text{amazing}}] \]
Back to Neural Nets!

- Let’s find $\frac{\partial s}{\partial b}$
- In practice we care about the gradient of the loss, but we will compute the gradient of the score for simplicity

$$s = u^T h$$

$$h = f(Wx + b)$$

x (input)
1. Break up equations into simple pieces

\[s = u^T h \]

\[h = f(Wx + b) \]

\[x \text{ (input)} \]
2. Apply the chain rule

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \text{ (input)} \]
2. Apply the chain rule

\[s = u^T h \]

\[h = f(z) \]

\[z = Wx + b \]

\[x \quad \text{(input)} \]
2. Apply the chain rule

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x &= \text{(input)}
\end{align*}
\]

\[
\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b}
\]
2. Apply the chain rule

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \quad (\text{input}) \]

\[
\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b}
\]
3. Write out the Jacobians

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \quad \text{(input)} \]

Useful Jacobians from previous slide

\[\frac{\partial}{\partial h}(u^T h) = u^T \]
\[\frac{\partial}{\partial z}(f(z)) = \text{diag}(f'(z)) \]
\[\frac{\partial}{\partial b}(Wx + b) = I \]
3. Write out the Jacobians

\[
\begin{aligned}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x &= \text{(input)}
\end{aligned}
\]

Useful Jacobians from previous slide

\[
\begin{aligned}
 \frac{\partial}{\partial h}(u^T h) &= u^T \\
 \frac{\partial}{\partial z}(f(z)) &= \text{diag}(f'(z)) \\
 \frac{\partial}{\partial b}(Wx + b) &= I
\end{aligned}
\]
3. Write out the Jacobians

\[s = u^T h \]

\[h = f(z) \]

\[z = Wx + b \]

\[x \quad \text{(input)} \]

Useful Jacobians from previous slide

\[\frac{\partial}{\partial h}(u^T h) = u^T \]

\[\frac{\partial}{\partial z}(f(z)) = \text{diag}(f'(z)) \]

\[\frac{\partial}{\partial b}(Wx + b) = I \]

\[\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b} \]

\[= u^T \text{diag}(f'(z)) \]
3. Write out the Jacobians

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \text{ (input)} \]

Useful Jacobians from previous slide

\[\frac{\partial}{\partial h}(u^T h) = u^T \]
\[\frac{\partial}{\partial z}(f(z)) = \text{diag}(f'(z)) \]
\[\frac{\partial}{\partial b}(Wx + b) = I \]
3. Write out the Jacobians

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \quad \text{(input)} \]

Useful Jacobians from previous slide
\[\frac{\partial}{\partial h}(u^T h) = u^T \]
\[\frac{\partial}{\partial z}(f(z)) = \text{diag}(f'(z)) \]
\[\frac{\partial}{\partial b}(Wx + b) = I \]
Re-using Computation

• Suppose we now want to compute \(\frac{\partial s}{\partial W} \)

• Using the chain rule again:

\[
\frac{\partial s}{\partial W} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial W}
\]
Re-using Computation

- Suppose we now want to compute \(\frac{\partial s}{\partial W} \)
- Using the chain rule again:

\[
\frac{\partial s}{\partial W} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial W}
\]

\[
\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b}
\]

The same! Let’s avoid duplicated computation...
Re-using Computation

• Suppose we now want to compute \(\frac{\partial s}{\partial W} \)

 • Using the chain rule again:

\[
\frac{\partial s}{\partial W} = \delta \frac{\partial z}{\partial W} \\
\frac{\partial s}{\partial b} = \delta \frac{\partial z}{\partial b} \\
\delta = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} = u^T \circ f'(z)
\]
Derivative with respect to Matrix

- What does $\frac{\partial s}{\partial W}$ look like? $W \in \mathbb{R}^{n \times m}$
- 1 output, nm inputs: 1 by nm Jacobian?
 - Inconvenient to do $\theta_{new} = \theta_{old} - \alpha \nabla_\theta J(\theta)$
Derivative with respect to Matrix

• What does \(\frac{\partial s}{\partial W} \) look like? \(W \in \mathbb{R}^{n \times m} \)

• 1 output, \(nm \) inputs: 1 by \(nm \) Jacobian?
 • Inconvenient to do \(\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta) \)

• Instead follow convention: shape of the gradient is shape of parameters

So \(\frac{\partial s}{\partial W} \) is \(n \) by \(m \):

\[
\begin{bmatrix}
\frac{\partial s}{\partial W_{11}} & \cdots & \frac{\partial s}{\partial W_{1m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial s}{\partial W_{n1}} & \cdots & \frac{\partial s}{\partial W_{nm}}
\end{bmatrix}
\]
Derivative with respect to Matrix

• Remember \(\frac{\partial s}{\partial W} = \delta \frac{\partial z}{\partial W} \)
 • \(\delta \) is going to be in our answer
 • The other term should be \(x \) because \(z = Wx + b \)

• It turns out \(\frac{\partial s}{\partial W} = \delta^T x^T \)
Why the Transposes?

\[\frac{\partial s}{\partial W} = \delta^T x^T \]

\[[n \times m] \quad [n \times 1][1 \times m] \]

• Hacky answer: this makes the dimensions work out
 • Useful trick for checking your work!

• Full explanation in the lecture notes
Why the Transposes?

\[
\frac{\partial s}{\partial W} = \delta^T \mathbf{x}^T = \begin{bmatrix}
\delta_1 \\
\vdots \\
\delta_n
\end{bmatrix}
\begin{bmatrix}
x_1, \ldots, x_m
\end{bmatrix}
= \begin{bmatrix}
\delta_1 x_1 & \cdots & \delta_1 x_m \\
\vdots & \ddots & \vdots \\
\delta_n x_1 & \cdots & \delta_n x_m
\end{bmatrix}
\]

- Hacky answer: this makes the dimensions work out
 - Useful trick for checking your work!
- Full explanation in the lecture notes
What shape should derivatives be?

- \[\frac{\partial s}{\partial b} = u^T \circ f'(z) \] is a row vector
 - But convention says our gradient should be a column vector because \(b \) is a column vector...

- Disagreement between Jacobian form (which makes the chain rule easy) and the shape convention (which makes implementing SGD easy)
 - We expect answers to follow the shape convention
 - But Jacobian form is useful for computing the answers
What shape should derivatives be?

- Two options:

- 1. Use Jacobian form as much as possible, reshape to follow the convention at the end:
 - What we just did. But at the end transpose $\frac{\partial s}{\partial b}$ to make the derivative a column vector, resulting in δ^T

- 2. Always follow the convention
 - Look at dimensions to figure out when to transpose and/or reorder terms.
Notes on PA1

• Don’t worry if you used some other method for gradient computation (as long as your answer is right and you are consistent!)

• This lecture we computed the gradient of the score, but in PA1 its of the loss

• Don’t forget to replace f' with the actual derivative

• PA1 uses $xW + b$ for the linear transformation: gradients are different!
Backpropagation

• Compute gradients algorithmically
• Converting what we just did by hand into an algorithm
• Used by deep learning frameworks (TensorFlow, PyTorch, etc.)
Computational Graphs

- Representing our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x &\text{ (input)}
\end{align*}
\]
Computational Graphs

- Representing our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations
 - Edges pass along result of the operation

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x &\quad \text{(input)}
\end{align*}
\]
Computational Graphs

- Representing our neural net equations as a graph:

\[s = u^T h \]
\[h = f(z) \]
\[c + b \]

"Forward Propagation"

Diagram:

- Source nodes: inputs
- Interior nodes: operations
- Edges: pass along result of the operation

Graph representing the neural net equations.

Mathematical equations:

- Input: \(x \)
- Output: \(s \)
- Weights: \(W \)
- Bias: \(b \)
- Function: \(f \)
- Coefficients: \(u^T \)
Backpropagation

- Go backwards along edges
 - Pass along gradients

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \] (input)

\[\frac{\partial s}{\partial z} \]
\[\frac{\partial s}{\partial h} \]
\[\frac{\partial s}{\partial b} \]
Backpropagation: Single Node

- Node receives an “upstream gradient”
- Goal is to pass on the correct “downstream gradient”
Backpropagation: Single Node

- Each node has a **local gradient**
- The gradient of its output with respect to its input

\[h = f(z) \]
Backpropagation: Single Node

- Each node has a **local gradient**
- The gradient of its output with respect to its input

\[h = f(z) \]

\[
\frac{\partial s}{\partial z} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z}
\]

Chain rule!

Local gradient

Downstream gradient

Upstream gradient
Backpropagation: Single Node

• Each node has a **local gradient**
 • The gradient of its output with respect to its input

• \([\text{downstream gradient}] = [\text{upstream gradient}] \times [\text{local gradient}]\)

\[h = f(z) \]
Backpropagation: Single Node

- What about nodes with multiple inputs?

\[z = Wx \]
Backpropagation: Single Node

- Multiple inputs -> multiple local gradients

\[z = Wx \]

\[
\frac{\partial s}{\partial W} = \frac{\partial s}{\partial z} \frac{\partial z}{\partial W}
\]

\[
\frac{\partial s}{\partial x} = \frac{\partial s}{\partial z} \frac{\partial z}{\partial x}
\]

Downstream gradients

Local gradients

Upstream gradient
An Example

\[
\begin{align*}
 f(x, y, z) &= (x + y) \max(y, z) \\
 x &= 1, \quad y = 2, \quad z = 0
\end{align*}
\]
An Example

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]
An Example

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

Forward prop steps

\[a = x + y \]

\[b = \max(y, z) \]

\[f = ab \]
An Example

Forward prop steps

\[a = x + y \]

\[b = \max(y, z) \]

\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]

\[
f(x, y, z) = (x + y) \max(y, z) \]

\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps
\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients
\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]
\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps
\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients
\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]
\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]
\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[a = x + y \]

\[b = \max(y, z) \]

\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]

\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]

\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]

\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]
\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]
\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]
\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]
\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[a = x + y \]

\[b = \max(y, z) \]

\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]

\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]

\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

upstream * local = downstream
An Example

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]
\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]
\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

Diagram:

- \(x \) to \(+ \) with weights 1 and 2.
- \(y \) to \(+ \) with weights 2.
- \(z \) to \(\max \) with weights 0.
- \(+ \) output to \(\max \) with weights 3.
- \(\max \) output to \(* \) with weights 3.
- \(* \) output with weight 6.
Gradients add at branches
Gradients add at branches

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

\[
\frac{\partial f}{\partial y} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial y} + \frac{\partial f}{\partial b} \frac{\partial b}{\partial y}
\]
Node Intuitions

\[
f(x, y, z) = (x + y) \max(y, z)
\]

\[
x = 1, y = 2, z = 0
\]

• "distributes" the upstream gradient
Node Intuitions

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

- + “distributes” the upstream gradient
- max “routes” the upstream gradient
Node Intuitions

\[
f(x, y, z) = (x + y) \max(y, z)
\]
\[
x = 1, \quad y = 2, \quad z = 0
\]

- + “distributes” the upstream gradient
- max “routes” the upstream gradient
- * “switches” the upstream gradient
Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x &= \text{(input)}
\end{align*}
\]
Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$
 - Then independently compute $\frac{\partial s}{\partial W}$
 - Duplicated computation!

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= W x + b \\
 x &= \text{(input)}
\end{align*}
\]
Efficiency: compute all gradients at once

- Correct way:
 - Compute all the gradients at once
 - Analogous to using δ when we computed gradients by hand

\[
s = u^T h \\
h = f(z) \\
z = Wx + b \\
x \quad \text{(input)}
\]
Backprop Implementations

class ComputationalGraph(object):

 #...

 def forward(inputs):
 # 1. [pass inputs to input gates...]
 # 2. forward the computational graph:
 for gate in self.graph.nodes_topologically_sorted():
 gate.forward()
 return loss # the final gate in the graph outputs the loss

 def backward():
 for gate in reversed(self.graph.nodes_topologically_sorted()):
 gate.backward() # little piece of backprop (chain rule applied)
 return inputs_gradients
Implementation: forward/backward API

(x, y, z are scalars)
Implementation: forward/backward API

\[(x, y, z \text{ are scalars})\]
Alternative to backprop: Numeric Gradient

- For small h, $f'(x) \approx \frac{f(x + h) - f(x - h)}{2h}$
- Easy to implement
- But approximate and very slow:
 - Have to recompute f for every parameter of our model
- Useful for checking your implementation
Summary

• Backpropagation: recursively apply the chain rule along computational graph
 - \([\text{downstream gradient}] = [\text{upstream gradient}] \times [\text{local gradient}]\)
• Forward pass: compute results of operation and save intermediate values
• Backward: apply chain rule to compute gradient
Project Types

1. Apply existing neural network model to a new task

2. Implement a complex neural architecture(s)
 - This is what PA4 will have you do!

3. Come up with a new model/training algorithm/etc.
 - Get 1 or 2 working first

- See project page for some inspiration
Must-haves (choose-your-own final project)

• 10,000+ labeled examples by milestone
• Feasible task
• Automatic evaluation metric
• NLP is central
Details matter!

• Split your data into train/dev/test: only look at test for final experiments
• Look at your data, collect summary statistics
• Look at your model’s outputs, do error analysis
• Tuning hyperparameters is important
• Writeup quality is important
 • Look at last-year’s prize winners for examples
Project Advice

- Implement simplest possible model first (e.g., average word vectors and apply logistic regression) and improve it
 - Having a baseline system is crucial
- First overfit your model to train set (get really good training set results)
 - Then regularize it so it does well on the dev set
- Start early!