Hugging Face
Transformers
Tutorial

CS224N: Natural Language Processing with Deep Learning

Winter 2026

Slides By: Minsik Oh

Session Agenda

Interactive hands-on tutorial

Setup & Introduction

Install packages, overview of HF ecosystem

Tokenizers Deep Dive

Tokenization pipeline, special tokens, padding, batch encoding

Models & Inference

Loading models, AutoModel classes, forward pass, attention visualization

Fine-tuning on IMDB

Dataset loading, training loop, HF Trainer, callbacks, evaluation

Generation & Wrap-up

Text generation with GPT-2, custom datasets, pipelines, Q&A

What is Hugging Face
Transformers?

Models

: . Supported Frameworks
Pretrained weights + code (Llama 3, DBRX, BERT, GPT-2, etc.)

Tokenizers Q PyTorch (used today)

Model-specific text preprocessing (Python & Rust)
Q TensorFlow

One-line inference for common NLP tasks

Project Types this helps with:
Datasets

Standard dataset loading & preprocessing
1. Applying pretrained models to new tasks

3. Analyzing model behavior & representations
Trainer

Training loop abstraction with logging & checkpointing

‘ Pipelines Q Flax / JAX

The Common Pattern

HF workflow follows this 3-step pattern:

> >

Find a Model Initialize Predict
Browse the Hugging Face Hub Load the Tokenizer Tokenize input — Forward pass
Anyone can upload models! Load the Model — Get prediction

AutoTokenizer.from pretrained("siebert/sentiment-roberta-large-english")

AutoModelForSequenceClassification.from _pretrained(...)
model (**tokenizer(text, return_tensors="pt"))

£l Hands-On: Setup & First Prediction

Open the Colab notebook linked on the course page
Run the install cells: pip install transformers datasets accelerate

Run Part 0 — load the sentiment model and tokenizer

Try changing the input string and re-running the prediction

® Expected output: "The prediction is POSITIVE" for the default input

Tokenizers: From Text to Numbers

Raw String Tokens Token IDs Model Input

> > >

["Hu", "##gging","Face",...

"Hugging Face is great!" 1 [20164, 10932, 10289,...] tensor([[101, 20164,...]])
Three Ways to Load a Tokenizer
DistilBertTokenizer Model-specific, Python
DistilBertTokenizerFast Model-specific, Rust (faster)

AutoTokenizer Auto-detects model type 4 Recommended

Tokenizer: Step by Step

input_tokens = tokenizer.tokenize(input_str)
input_ids = tokenizer.convert_tokens to_ids(input_tokens)

input_ids_special = cls + input_ids + sep

decoded = tokenizer.decode(input_ids_special)

Q Special Tokens [CLS] at start, [SEP] at end — model-dependent
Q Subword Tokenization "Hugging" — "Hu" + "##gging" — handles unknown words

Q Attention Mask 1 for real tokens, 0 for padding — tells model what to attend to

Padding, Truncation & Batching

model inputs = tokenizer(
["Short text", "A much longer text..."],

return_tensors="pt", padding=True, truncation=True

What happens:

« Sentence 1's attention mask (padding = 0)

£l Hands-On: Explore Tokenizers

1 Run Section 0.1 — compare DistilBertTokenizer vs Fast vs Auto

2 Try tokenizing your own sentences, decode them back

3 Experiment with padding=True on batches of different lengths

4 Use char_to_token() to find which wordpiece a character belongs to

5 Try batch_decode with and without skip_special_tokens=True

° Tip: Use return_tensors="pt" to get PyTorch tensors directly

Models: Architecture & Heads

Three Types of Transformer Models

Encoders Decoders Enc-Dec
BERT, DistilBERT GPT-2, LLaMA BART, T5
Classification, NER, analysis Text generation Summarization, translation

Task-Specific Model Heads

*Model Base representations *ForTokenClassification NER, POS tagging

*ForMaskedLM Fill in the blank *ForQuestionAnswering Extractive QA

*ForSequenceClassificatientiment, topic

P *ForCausallLM Text generation
on classification

Model Inference: It's Just PyTorch!

model inputs = tokenizer(text, return_tensors="pt")
model outputs = model(**model inputs)

loss = F.cross_entropy(outputs.logits, labels)

Standard nn.Module Use any PyTorch optimizer, scheduler, or loss function

Built-in Loss Pass 'labels' kwarg and the model computes loss automatically

Attention & Hidden States Set output_attentions=True and output_hidden_states=True

El Hands-On: Models & Inference

| Run Section 0.2 — load DistilBERT for classification

2 Compare base model vs classification model outputs

3 Try passing 'labels' to the model and inspect the loss

4 Run the attention visualization code — examine the heatmaps

5 Which attention heads attend to [SEP]? Which attend locally?

® See "What does BERT look at?" (Clark et al., 2019) for attention analysis

Fine-tuning: Loading Datasets

IMDB Dataset

25,000 train / 25,000 test reviews
Binary sentiment: POSITIVE / NEGATIVE
We use 128 train + 32 val (for speed)
Truncated to 50 tokens each

Dataset Preprocessing Pipeline

1. Tokenize 2. Remove text

Apply tokenizer to text with
padding & truncation

remove_columns(["text"]) —
model only needs IDs

ds = load_dataset("stanfordnlp/imdb")

tokenized = ds.map(
lambda ex: tokenizer(
ex['text'], padding=True,
truncation=True),
batched=True)

3. Rename label 4. Set format

rename_column("label",
"labels") — HF convention

set_format("torch") —
convert to PyTorch tensors

Fine-tuning: The Training Loop

Option A: PyTorch Training Loop

optimizer = AdamW(model.parameters(), args = TrainingArguments (
lr=5e-5) output dir="checkpoints",
per_device_train_batch_size=16,
for epoch in range(num_epochs): num_train_epochs=2,
model.train() eval strategy="epoch",
for batch in train_dataloader: learning_rate=2e-5)

optimizer.step()
optimizer.zero_grad()

model.eval() # validation
for batch in eval dataloader:
with torch.no_grad():
output = model(**batch) trainer.train()

HF Trainer: Callbacks & Evaluation

Callbacks Evaluation
EarlyStoppingCallback trainer.evaluate()

Stop training when validation loss plateaus Returns evaluation metrics
LoggingCallback (custom) trainer.predict(test_ds)

Log metrics to JSONL file on each logging step Returns predictions + metrics

Custom callbacks can hook into: compute_metrics function:

on_log, on_epoch _end, on_evaluate, on_save, Custom metric calculation at eval time

(accuracy, F1, etc.)

Recommended Starting Hyperparameters

Epochs Learning Rate Batch Size Weight Decay Warmup Steps
As large as fits

2—4 2e-5 or 5e-5 GPU

0, 0.01, Or 0.1 0, 100, Or 500

[l Hands-On: Fine-tune on IMDB

1 Run Section 2.1 — load & preprocess the IMDB dataset

2 Run the PyTorch training loop (Section 2.2) — watch the loss decrease
3 Run the HF Trainer version — compare the two approaches

4 Add EarlyStoppingCallback and LoggingCallback

5 Use trainer.predict() to evaluate — check accuracy

6 Load the saved checkpoint and test on your own review!

Text Generation with GPT-2

tokenizer = AutoTokenizer.from_pretrained('gpt2')
model = AutoModelForCausallLM.from pretrained('distilgpt2")

prompt = "Once upon a time"
tokenized = tokenizer(prompt, return_tensors="pt")

output = model.generate(**tokenized,
max_length=50, do_sample=True, top p=0.9)

Key Generation Parameters

Pipelines & Masked Language
Modeling

Pipelines: One-Line Inference Masked Language Modeling

mlm =

pipeline("fill-mask", "bert-base-cased")

sa = pipeline("sentiment-analysis",

model="siebert/...")

Top predictions:
— excited (35.5%)

Available pipelines: sentiment-analysis, fill-mask, — going (15.6%)
text-generation, question-answering, summarization, — eager (7.9%)
translation, NER, ... — here (3.6%)

Custom Datasets (Appendix 1 in notebook)

You can create custom PyTorch Datasets for HF models — just return tokenized dicts from __getitem__. See the E2E
Dataset example in the notebook for encoder-decoder tasks.

=) Hands-On: Generation, Pipelines &

~ Wrap-up

Run Appendix 0 — generate text with DistilGPT-2

Try different prompts and play with top_p / temperature

Run Appendix 2 — use the sentiment pipeline on your text

Run Appendix 4 — try fill-mask with BERT, craft your own [MASK] prompts

© Challenge: Can you get GPT-2 to generate a coherent story? What temperature works best?

Resources & Next Steps

E Hugging Face Docs huggingface.co/docs

API reference, tutorials, model list

E HF Course huggingface.co/course

Free NLP course with interactive exercises

E HF Examples github.com/huggingface/transformers/examples

Task-specific code templates

E HF O'Reilly BOOk Natural Language Processing with Transformers
In-depth guide with code

For your CS224N projects: start with a pretrained model + HF Trainer, iterate on hyperparameters, evaluate
different prompts, and monitor validation loss. Good luck!

