
🤗

Hugging Face
Transformers 
Tutorial
CS224N: Natural Language Processing with Deep Learning

Winter 2026

Slides By: Minsik Oh



Session Agenda
Interactive hands-on tutorial

Setup & Introduction
Install packages, overview of HF ecosystem

Tokenizers Deep Dive
Tokenization pipeline, special tokens, padding, batch encoding

Models & Inference
Loading models, AutoModel classes, forward pass, attention visualization

Fine-tuning on IMDB
Dataset loading, training loop, HF Trainer, callbacks, evaluation

Generation & Wrap-up
Text generation with GPT-2, custom datasets, pipelines, Q&A



What is Hugging Face 
Transformers?

Models
Pretrained weights + code (Llama 3, DBRX, BERT, GPT-2, etc.)

Tokenizers
Model-specific text preprocessing (Python & Rust)

Pipelines
One-line inference for common NLP tasks

Datasets
Standard dataset loading & preprocessing

Trainer
Training loop abstraction with logging & checkpointing

Supported Frameworks

PyTorch (used today)

TensorFlow

Flax / JAX

Project Types this helps with:

1. Applying pretrained models to new tasks
3. Analyzing model behavior & representations



The Common Pattern
HF workflow follows this 3-step pattern:

1

Find a Model

Browse the Hugging Face Hub
Anyone can upload models!

2

Initialize

Load the Tokenizer
Load the Model

3

Predict

Tokenize input → Forward pass
→ Get prediction

tokenizer = AutoTokenizer.from_pretrained("siebert/sentiment-roberta-large-english")
model     = AutoModelForSequenceClassification.from_pretrained(...)
outputs   = model(**tokenizer(text, return_tensors="pt"))



Hands-On: Setup & First Prediction

1 Open the Colab notebook linked on the course page

2 Run the install cells:  pip install transformers datasets accelerate

3 Run Part 0 — load the sentiment model and tokenizer

4 Try changing the input string and re-running the prediction

💡 Expected output: "The prediction is POSITIVE" for the default input



Tokenizers: From Text to Numbers

Raw String

"Hugging Face is great!"

Tokens

["Hu","##gging","Face",...
]

Token IDs

[20164, 10932, 10289,...]

Model Input

tensor([[101, 20164,...]])

Three Ways to Load a Tokenizer

DistilBertTokenizer Model-specific, Python

DistilBertTokenizerFast Model-specific, Rust (faster)

AutoTokenizer Auto-detects model type ✦ Recommended



Tokenizer: Step by Step
input_tokens = tokenizer.tokenize(input_str)
# → ["Hu", "##gging", "Face", "Transformers", "is", "great", "!"]

input_ids = tokenizer.convert_tokens_to_ids(input_tokens)
# → [20164, 10932, 10289, 25267, 1110, 1632, 106]

input_ids_special = cls + input_ids + sep
# → [101, 20164, ..., 106, 102]   ([CLS]...[SEP])

decoded = tokenizer.decode(input_ids_special)
# → "[CLS] Hugging Face Transformers is great! [SEP]"

Special Tokens  [CLS] at start, [SEP] at end — model-dependent

Subword Tokenization  "Hugging" → "Hu" + "##gging" — handles unknown words

Attention Mask  1 for real tokens, 0 for padding — tells model what to attend to



Padding, Truncation & Batching

model_inputs = tokenizer(
    ["Short text", "A much longer text..."],
    return_tensors="pt", padding=True, truncation=True
)

What happens:

Sentence 1: [CLS] Short text [SEP] [PAD] [PAD] [PAD]

Sentence 2: [CLS] A much longer text ... [SEP]

Attn Mask: 1 1 1 1 0 0 0

← Sentence 1's attention mask (padding = 0)



Hands-On: Explore Tokenizers

1 Run Section 0.1 — compare DistilBertTokenizer vs Fast vs Auto

2 Try tokenizing your own sentences, decode them back

3 Experiment with padding=True on batches of different lengths

4 Use char_to_token() to find which wordpiece a character belongs to

5 Try batch_decode with and without skip_special_tokens=True

💡 Tip: Use return_tensors="pt" to get PyTorch tensors directly



Models: Architecture & Heads
Three Types of Transformer Models

Encoders
BERT, DistilBERT

Classification, NER, analysis

Decoders
GPT-2, LLaMA

Text generation

Enc-Dec
BART, T5

Summarization, translation

Task-Specific Model Heads

*Model Base representations

*ForMaskedLM Fill in the blank

*ForSequenceClassificati
on

Sentiment, topic 
classification

*ForTokenClassification NER, POS tagging

*ForQuestionAnswering Extractive QA

*ForCausalLM Text generation



Model Inference: It's Just PyTorch!

# Pass inputs via keyword args or dict unpacking
model_inputs = tokenizer(text, return_tensors="pt")
model_outputs = model(**model_inputs)

# Calculate loss normally
loss = F.cross_entropy(outputs.logits, labels)
loss.backward()  # Standard PyTorch!

Standard nn.Module Use any PyTorch optimizer, scheduler, or loss function

Built-in Loss Pass 'labels' kwarg and the model computes loss automatically

Attention & Hidden States Set output_attentions=True and output_hidden_states=True



Hands-On: Models & Inference

1 Run Section 0.2 — load DistilBERT for classification

2 Compare base model vs classification model outputs

3 Try passing 'labels' to the model and inspect the loss

4 Run the attention visualization code — examine the heatmaps

5 Which attention heads attend to [SEP]? Which attend locally?

💡 See "What does BERT look at?" (Clark et al., 2019) for attention analysis



Fine-tuning: Loading Datasets

IMDB Dataset

25,000 train / 25,000 test reviews
Binary sentiment: POSITIVE / NEGATIVE
We use 128 train + 32 val (for speed)
Truncated to 50 tokens each

from datasets import load_dataset

ds = load_dataset("stanfordnlp/imdb")

# Tokenize the dataset
tokenized = ds.map(
  lambda ex: tokenizer(
    ex['text'], padding=True,
    truncation=True),
  batched=True)

Dataset Preprocessing Pipeline

1. Tokenize

Apply tokenizer to text with 
padding & truncation

2. Remove text

remove_columns(["text"]) — 
model only needs IDs

3. Rename label

rename_column("label", 
"labels") — HF convention

4. Set format

set_format("torch") — 
convert to PyTorch tensors



Fine-tuning: The Training Loop
Option A: PyTorch Training Loop

optimizer = AdamW(model.parameters(),
                  lr=5e-5)

for epoch in range(num_epochs):
  model.train()
  for batch in train_dataloader:
    output = model(**batch)
    output.loss.backward()
    optimizer.step()
    optimizer.zero_grad()

  model.eval()  # validation
  for batch in eval_dataloader:
    with torch.no_grad():
      output = model(**batch)

Option B: HF Trainer (recommended)

args = TrainingArguments(
  output_dir="checkpoints",
  per_device_train_batch_size=16,
  num_train_epochs=2,
  eval_strategy="epoch",
  learning_rate=2e-5)

trainer = Trainer(
  model=model,
  args=args,
  train_dataset=train_ds,
  eval_dataset=val_ds,
  compute_metrics=fn)

trainer.train()



HF Trainer: Callbacks & Evaluation

Callbacks

EarlyStoppingCallback
Stop training when validation loss plateaus

LoggingCallback (custom)
Log metrics to JSONL file on each logging step

Custom callbacks can hook into:
on_log, on_epoch_end, on_evaluate, on_save, 
...

Evaluation

trainer.evaluate()
Returns evaluation metrics

trainer.predict(test_ds)
Returns predictions + metrics

compute_metrics function:
Custom metric calculation at eval time
(accuracy, F1, etc.)

Recommended Starting Hyperparameters

Epochs

2–4
Learning Rate

2e-5 or 5e-5
Batch Size
As large as fits 
GPU

Weight Decay

0, 0.01, or 0.1
Warmup Steps

0, 100, or 500



Hands-On: Fine-tune on IMDB

1 Run Section 2.1 — load & preprocess the IMDB dataset

2 Run the PyTorch training loop (Section 2.2) — watch the loss decrease

3 Run the HF Trainer version — compare the two approaches

4 Add EarlyStoppingCallback and LoggingCallback

5 Use trainer.predict() to evaluate — check accuracy

6 Load the saved checkpoint and test on your own review!



Text Generation with GPT-2
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('gpt2')
model = AutoModelForCausalLM.from_pretrained('distilgpt2')

prompt = "Once upon a time"
tokenized = tokenizer(prompt, return_tensors="pt")

output = model.generate(**tokenized,
    max_length=50, do_sample=True, top_p=0.9)

Key Generation Parameters

max_length Maximum number of tokens to generate

do_sample Enable sampling (vs greedy decoding)

top_p Nucleus sampling — only consider top-p probability mass

temperature Controls randomness: lower = more deterministic

top_k Only sample from top-k most likely tokens



Pipelines & Masked Language 
Modeling

Pipelines: One-Line Inference

sa = pipeline("sentiment-analysis",
  model="siebert/...")
sa("This movie is great!")

Available pipelines: sentiment-analysis, fill-mask, 
text-generation, question-answering, summarization, 
translation, NER, ...

Masked Language Modeling

mlm = 
pipeline("fill-mask","bert-base-cased")
mlm("I am [MASK] to learn!")

Top predictions:
→ excited (35.5%)
→ going (15.6%)
→ eager (7.9%)
→ here (3.6%)

Custom Datasets (Appendix 1 in notebook)

You can create custom PyTorch Datasets for HF models — just return tokenized dicts from __getitem__. See the E2E 
Dataset example in the notebook for encoder-decoder tasks.



Hands-On: Generation, Pipelines & 
Wrap-up

1 Run Appendix 0 — generate text with DistilGPT-2

2 Try different prompts and play with top_p / temperature

3 Run Appendix 2 — use the sentiment pipeline on your text

4 Run Appendix 4 — try fill-mask with BERT, craft your own [MASK] prompts

🎯 Challenge: Can you get GPT-2 to generate a coherent story? What temperature works best?



Resources & Next Steps
Hugging Face Docs
API reference, tutorials, model list

huggingface.co/docs

HF Course
Free NLP course with interactive exercises

huggingface.co/course

HF Examples
Task-specific code templates

github.com/huggingface/transformers/examples

HF O'Reilly Book
In-depth guide with code

Natural Language Processing with Transformers

For your CS224N projects: start with a pretrained model + HF Trainer, iterate on hyperparameters, evaluate 
different prompts, and monitor validation loss. Good luck!


