Recent improvements in Q&A have seen a progression from using RNNs to CNNs due to improved training and inference speeds. The QANet model, introduced in Yu et al. (2018) [1], combines CNNs with self-attention, first seen in Vaswani et al. (2017) [2]. We build upon the BiDAF model described in Seo et al. (2016) to create our own implementation of the QANet model, achieving a single-model dev F1 score of 65.67, 4.48 points higher than the baseline BiDAF model [3]. We complement the QANet model with our own extension on the conditional output layer described in Kim and Wolff [4]. We achieve an ensemble dev F1 score of 67.08. Our ensemble model achieves a test F1 score of 63.33.

Introduction
- Early Q&A models relied on sequential end-to-end structure; however, more recent models propose more parallelizable structures.
- We create our own implementation of the QANet model. Our implementation achieves a similar performance score (61.03 F1) within an hour of training while it took the BiDAF baseline 2.5 hours to achieve 60.99 F1.
- We extend our implementation of QANet by implementing the conditional output layer described in Kim and Wolff [4] and then create our own conditional output layer.
- We further experiment with different novel changes on top of our baseline QANet model, including data augmentation, different model ensemble methods, and changing model sizes.

Method

| Baselines | BiDAF [3], BiDAF + character embeddings, QANet [1] |

| Dataset | SQuAD 2.0, F1, EM, Training Time |

Improving QANet

Data Augmentation
- Apply data augmentation by separately backtranslating context and answer from (context, question, answer) triple.
- Include backtranslated question/answer pair if new answer appears in new context.

Cross-Conditional Output Layers
- Based on Kim and Wolff [4], condition end probabilities on start probabilities and condition start probabilities on end probabilities (see Figure 1 for diagram of output layer).

Ensembling
- Implement segment and token max-ensemble, where possible answers are voted over their entire span vs. individual words.

Results

<table>
<thead>
<tr>
<th>Model</th>
<th>100%</th>
<th>80%-99%</th>
<th>60%-79%</th>
<th>Training Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiDAF</td>
<td>64.45</td>
<td>38.4</td>
<td>22.5</td>
<td>100</td>
</tr>
<tr>
<td>QANet</td>
<td>65.67</td>
<td>38.4</td>
<td>22.5</td>
<td>100</td>
</tr>
<tr>
<td>QANet [4]</td>
<td>63.53</td>
<td>38.4</td>
<td>22.5</td>
<td>100</td>
</tr>
<tr>
<td>QANet [4] w/ Data Augmentation</td>
<td>63.53</td>
<td>38.4</td>
<td>22.5</td>
<td>100</td>
</tr>
<tr>
<td>QANet [4] w/ Data Augmentation + bias</td>
<td>63.53</td>
<td>38.4</td>
<td>22.5</td>
<td>100</td>
</tr>
</tbody>
</table>

Discussion

Data Augmentation
- Improved performance for larger (i.e. x2 hidden size) models.
- Decreased performance for regular models.
- Poorly backtranslated answers introduce incorrect answer spans in the context which can result in poor performance.

Forward-Backward Output Layer
- Improved performance over our implementation of Kim and Wolff [4] by using conditional probabilities for start and end.
- Achieved lower overall performance than best model but improvement over [4] indicates their might be reason to continue exploring bi-directional conditionalities for the output layer.

Ensembling
- Four models (QANet, QANet+, QANet Avg., QANet Trunc).
- We saw overall improvement of 1.688 F1 from the baseline QANet model through segment max-ensembling.
- Both ensembling techniques leverage the individual strengths of each model, hence their improved performance.
- Segment max demonstrates improved performance over token max as it makes use of existing answers whereas token max could lead to it potentially creating an unseen response.

Regularization and Layer norms
- Attempted various regularization techniques, such as dropout, layer dropout, non-linear activations, L2 weight decay.
- Overfitting was still an issue, and occasionally became worse when some of these techniques were employed. Use of stochastic layer dropout meant that later layers (self-attention layer) would be dropped out more frequently than earlier layers (CNN layers), leading to loss of global interaction information and overfitting.

References

