A Mixture of Experts For Out Of Domain Expertise

Mia Sarojini Kynadi
Stanford Center for Professional Development
Mentor TA: Kamil Ali

Introduction

Out-of-Domain Question Answering

How to get a model to generalise well beyond its training distribution?
1. Use separate models or Experts, trained on different training datasets
2. Combine them with a gating mechanism

Key Findings

- Cantor Pairing to to generate single valued input to classifier (gating function) from DistilBERT output
- Loss function based on mixture of gaussians assumption
 \[E^c = -\log \sum_i p_i e^{-\frac{1}{2}(x_i - o^c)^2} \]

Methods

- 3 DistilBERTforQuestionAnswering models trained separately on SQuAD, NewsQA and NatQA datasets
- Outputs of models converted to single values with cantor pairing
- Probability distribution over experts generated by MLP

Analyses

- The MoE model with 4 experts does better than the MoE model with 3 experts during training because it benefits from the fully trained and finetuned 4th expert. However, I think this causes the MLP to preferentially choose the 4th expert very often and hence the ability to generalise outside the training set is reduced.
- The MoE model with 3 experts very often tends to predict an answer with a longer context window than the provided answer (ground truth label), causing the EM score to drop, but not affecting the F1 score as much.
- Further finetuning of the MLP parameters, the loss function, the appropriateness of cantor pairing need to be investigated to improve out-of-domain performance.

Conclusions

- Mixture of Experts model approach used here does not improve upon the baseline performance of DistilBERTforQuestionAnswering model trained on in-domain datasets and finetuned on small out-of-domain training set
- Loss function based on mixture of gaussians assumptions performs better than cross-entropy loss based on performance during training

Future Work

Explore unsupervised clustering of training data to find patterns in dataset and use that to train separate models

Results

- [Graph showing results]

References

- Neural Computation, 1991

Acknowledgments

- Mentor TA Kamil Ali
- Professor Manning and all TAs