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This note is optional and is aimed at students who wish to have
a deeper understanding of differential calculus. It defines and ex-
plains the links between derivatives, gradients, jacobians, etc. First,
we go through definitions and examples for f : Rn 7→ R. Then we
introduce the Jacobian and generalize to higher dimension. Finally,
we introduce the chain-rule.

1 Introduction

We use derivatives all the time, but we forget what they mean. In
general, we have in mind that for a function f : R 7→ R, we have
something like

f (x + h)− f (x) ≈ f ′(x)h

Some people use different notation, especially when dealing with
higher dimensions, and there usually is a lot of confusion between
the following notations

f ′(x)
d f
dx
∂ f
∂x
∇x f

Scalar-product and dot-product
Given two vectors a and b,

• scalar-product 〈a|b〉 = ∑n
i=1 aibi

• dot-product aT · b = 〈a|b〉 =

∑n
i=1 aibi

However, these notations refer to different mathematical objects,
and the confusion can lead to mistakes. This paper recalls some
notions about these objects.
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2 Theory for f : Rn 7→ R

2.1 Differential
Notation

dx f is a linear form Rn 7→ R

This is the best linear approximation
of the function f

Formal definition
Let’s consider a function f : Rn 7→ R defined on Rn with the scalar

product 〈·|·〉. We suppose that this function is differentiable, which
means that for x ∈ Rn (fixed) and a small variation h (can change) we
can write: dx f is called the differential of f in x

f (x + h) = f (x) + dx f (h) + oh→0(h) (1)

oh→0(h) (Landau notation) is equiva-
lent to the existence of a function ε(h)
such that lim

h→0
ε(h) = 0

and dx f : Rn 7→ R is a linear form, which means that ∀x, y ∈ Rn ,
we have dx f (x + y) = dx f (x) + dx f (y).

Example

Let f : R2 7→ R such that f (

(
x1

x2

)
) = 3x1 + x2

2. Let’s pick(
a
b

)
∈ R2 and h =

(
h1

h2

)
∈ R2. We have

f (

(
a + h1

b + h2

)
) = 3(a + h1) + (b + h2)

2

= 3a + 3h1 + b2 + 2bh2 + h2
2

= 3a + b2 + 3h1 + 2bh2 + h2
2

= f (a, b) + 3h1 + 2bh2 + o(h)

h2 = h · h = oh→0(h)

Then, da
b

 f (

(
h1

h2

)
) = 3h1 + 2bh2

2.2 Link with the gradients
Notation for x ∈ Rn, the gradient is
usually written ∇x f ∈ RnFormal definition

It can be shown that for all linear forms a : Rn 7→ R, there exists a
vector ua ∈ Rn such that ∀h ∈ Rn

The dual of a vector space E∗ is isomor-
phic to E

See Riesz representation theorema(h) = 〈ua|h〉

In particular, for the differential dx f , we can find a vector u ∈ Rn

such that

dx(h) = 〈u|h〉

. The gradient has the same shape as x
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We can thus define the gradient of f in x

∇x f := u

Then, as a conclusion, we can rewrite equation 2.1 Gradients and differential of a func-
tion are conceptually very different.
The gradient is a vector, while the
differential is a function

f (x + h) = f (x) + dx f (h) + oh→0(h) (2)

= f (x) + 〈∇x f |h〉+ oh→0(h) (3)

Example

Same example as before, f : R2 7→ R such that f (

(
x1

x2

)
) =

3x1 + x2
2. We showed that

da
b

 f (

(
h1

h2

)
) = 3h1 + 2bh2

We can rewrite this as

da
b

 f (

(
h1

h2

)
) = 〈

(
3
2b

)
|
(

h1

h2

)
〉

and thus our gradient is

∇a
b

 f =

(
3
2b

)

2.3 Partial derivatives
Notation

Partial derivatives are usually written
∂ f
∂x but you may also see ∂x f or f ′x

• ∂ f
∂xi

is a function Rn 7→ R

• ∂ f
∂x = ( ∂ f

∂x1
, . . . , ∂ f

∂xn
)T is a function

Rn 7→ Rn.

• ∂ f
∂xi

(x) ∈ R

• ∂ f
∂x (x) = ( ∂ f

∂x1
(x), . . . , ∂ f

∂xn
(x))T ∈ Rn

Formal definition
Now, let’s consider an orthonormal basis (e1, . . . , en) of Rn. Let’s

define the partial derivative

∂ f
∂xi

(x) := lim
h→0

f (x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f (x1, . . . , xn)

h

Note that the partial derivative ∂ f
∂xi

(x) ∈ R and that it is defined
with respect to the i-th component and evaluated in x.

Example
Same example as before, f : R2 7→ R such that f (x1, x2) =

3x1 + x2
2. Let’s write Depending on the context, most people

omit to write the (x) evaluation and just
write

∂ f
∂x ∈ Rn instead of ∂ f

∂x (x)
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∂ f
∂x1

(

(
a
b

)
) = lim

h→0

f (

(
a + h

b

)
)− f (

(
a
b

)
)

h

= lim
h→0

3(a + h) + b2 − (3a + b2)

h

= lim
h→0

3h
h

= 3

In a similar way, we find that

∂ f
∂x2

(

(
a
b

)
) = 2b

2.4 Link with the partial derivatives
That’s why we usually write

∇x f =
∂ f
∂x

(x)

(same shape as x)

Formal definition
It can be shown that

ei is a orthonormal basis. For instance,
in the canonical basis

ei = (0, . . . , 1, . . . 0)

with 1 at index i

∇x f =
n

∑
i=1

∂ f
∂xi

(x)ei

=


∂ f
∂x1

(x)
...

∂ f
∂xn

(x)


where ∂ f

∂xi
(x) denotes the partial derivative of f with respect to the

ith component, evaluated in x.
Example
We showed that 

∂ f
∂x1

(

a

b

) = 3

∂ f
∂x2

(

a

b

) = 2b

and that

∇a
b

 f =

(
3
2b

)

and then we verify that
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∇a
b

 f =


∂ f
∂x1

(

(
a
b

)
)

∂ f
∂x2

(

(
a
b

)
)


3 Summary

Formal definition
For a function f : Rn 7→ R, we have defined the following objects

which can be summarized in the following equation Recall that aT · b = 〈a|b〉 = ∑n
i=1 aibi

f (x + h) = f (x) + dx f (h) + oh→0(h) differential

= f (x) + 〈∇x f |h〉+ oh→0(h) gradient

= f (x) + 〈∂ f
∂x

(x)|h〉+ oh→0

= f (x) + 〈


∂ f
∂x1

(x)
...

∂ f
∂xn

(x)

 |h〉+ oh→0 partial derivatives

Remark
Let’s consider x : R 7→ R such that x(u) = u for all u. Then we can

easily check that dux(h) = h. As this differential does not depend on
u, we may simply write dx. That’s why the following expression has The dx that we use refers to the differ-

ential of u 7→ u, the identity mapping!some meaning,

dx f (·) = ∂ f
∂x

(x)dx(·)

because

dx f (h) =
∂ f
∂x

(x)dx(h)

=
∂ f
∂x

(x)h

In higher dimension, we write

dx f =
n

∑
i=1

∂ f
∂xi

(x)dxi

4 Jacobian: Generalization to f : Rn 7→ Rm

For a function
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f :


x1
...

xn

 7→


f1(x1, . . . , xn)
...

fm(x1, . . . , xn)


We can apply the previous section to each fi(x) :

fi(x + h) = fi(x) + dx fi(h) + oh→0(h)

= fi(x) + 〈∇x fi|h〉+ oh→0(h)

= fi(x) + 〈∂ fi
∂x

(x)|h〉+ oh→0

= fi(x) + 〈( ∂ fi
∂x1

(x), . . . ,
∂ fi
∂xn

(x))T |h〉+ oh→0

Putting all this in the same vector yields

f


x1 + h1

...
xn + hn

 = f


x1
...

xn

+


∂ f1
∂x (x)T · h

...
∂ fm
∂x (x)T · h

+ o(h)

Now, let’s define the Jacobian matrix as The Jacobian matrix has dimensions
m × n and is a generalization of the
gradient

J(x) :=


∂ f1
∂x (x)T

...
∂ fm
∂x (x)T

 =


∂ f1
∂x1

(x) . . . ∂ f1
∂xn

(x)
. . .

∂ fm
∂x1

(x) . . . ∂ fm
∂xn

(x)


Then, we have that

f


x1 + h1

...
xn + hn

 = f


x1
...

xn

+


∂ f1
∂x1

(x) . . . ∂ f1
∂xn

(x)
. . .

∂ fm
∂x1

(x) . . . ∂ fm
∂xn

(x)

 · h + o(h)

= f (x) + J(x) · h + o(h)

Example 1 : m = 1 In the case where m = 1, the Jacobian is
a row vector

∂ f1
∂x1

(x) . . . ∂ f1
∂xn

(x)
Remember that our gradient was

defined as a column vector with the
same elements. We thus have that

J(x) = ∇x f T

Let’s take our first function f : R2 7→ R such that f (

(
x1

x2

)
) =

3x1 + x2
2. Then, the Jacobian of f is

(
∂ f
∂x1

(x) ∂ f
∂x2

(x)
)
=
(

3 2x2

)
=

(
3

2x2

)T

= ∇ f (x)T
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Example 2 : g : R3 7→ R2 Let’s define

g(

y1

y2

y3

) =

(
y1 + 2y2 + 3y3

y1y2y3

)

Then, the Jacobian of g is

Jg(y) =

 ∂(y1+2y2+3y3)
∂y (y)T

∂(y1y2y3)
∂y (y)T


=

 ∂(y1+2y2+3y3)
∂y1

(y) ∂(y1+2y2+3y3)
∂y2

(y) ∂(y1+2y2+3y3)
∂y3

(y)
∂(y1y2y3)

∂y1
(y) ∂(y1y2y3)

∂y2
(y) ∂(y1y2y3)

∂y3
(y)


=

(
1 2 3

y2y3 y1y3 y1y2

)

5 Generalization to f : Rn×p 7→ R

If a function takes as input a matrix A ∈ Rn×p, we can transform this
matrix into a vector a ∈ Rnp, such that

A[i, j] = a[i + nj]

Then, we end up with a function f̃ : Rnp 7→ R. We can apply
the results from 3 and we obtain for x, h ∈ Rnp corresponding to
X, h ∈ Rn×p,

f̃ (x + h) = f (x) + 〈∇x f |h〉+ o(h)

where ∇x f =


∂ f
∂x1

(x)
...

∂ f
∂xnp(x)

.

Now, we would like to give some meaning to the following equa-
tion The gradient of f wrt to a matrix X is a

matrix of same shape as X and defined
by
∇X fij =

∂ f
∂Xij

(X)f (X + H) = f (X) + 〈∇X f |H〉+ o(H)

Now, you can check that if you define

∇X fij =
∂ f

∂Xij
(X)

that these two terms are equivalent
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〈∇x f |h〉 = 〈∇X f |H〉
np

∑
i=1

∂ f
∂xi

(x)hi = ∑
i,j

∂ f
∂Xij

(X)Hij

6 Generalization to f : Rn×p 7→ Rm

Let’s generalize the generalization of
the previous sectionApplying the same idea as before, we can write

f (x + h) = f (x) + J(x) · h + o(h)

where J has dimension m× n× p and is defined as

Jijk(x) =
∂ fi

∂Xjk
(x)

Writing the 2d-dot product δ = J(x) · h ∈ Rm means that the i-th
component of δ is You can apply the same idea to any

dimensions!

δi =
n

∑
j=1

p

∑
k=1

∂ fi
∂Xjk

(x)hjk

7 Chain-rule

Formal definition
Now let’s consider f : Rn 7→ Rm and g : Rp 7→ Rn. We want

to compute the differential of the composition h = f ◦ g such that
h : x 7→ u = g(x) 7→ f (g(x)) = f (u), or

dx( f ◦ g)

.
It can be shown that the differential is the composition of the dif-

ferentials

dx( f ◦ g) = dg(x) f ◦ dxg

Where ◦ is the composition operator. Here, dg(x) f and dxg are lin-
ear transformations (see section 4). Then, the resulting differential is
also a linear transformation and the jacobian is just the dot product
between the jacobians. In other words, The chain-rule is just writing the

resulting jacobian as a dot product of
jacobians. Order of the dot product is
very important!Jh(x) = J f (g(x)) · Jg(x)

where · is the dot-product. This dot-product between two matrices
can also be written component-wise:
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Jh(x)ij =
n

∑
k=1

J f (g(x))ik · Jg(x)kj

Example

Let’s keep our example function f : (

(
x1

x2

)
) 7→ 3x1 + x2

2 and our

function g : (

y1

y2

y3

) =

(
y1 + 2y2 + 3y3

y1y2y3

)
.

The composition of f and g is h = f ◦ g : R3 7→ R

h(

y1

y2

y3

) = f (

(
y1 + 2y2 + 3y3

y1y2y3

)
)

= 3(y1 + 2y2 + 3y3) + (y1y2y3)
2

We can compute the three components of the gradient of h with
the partial derivatives

∂h
∂y1

(y) = 3 + 2y1y2
2y2

3

∂h
∂y2

(y) = 6 + 2y2y2
1y2

3

∂h
∂y3

(y) = 9 + 2y3y2
1y2

2

And then our gradient is

∇yh =

3 + 2y1y2
2y2

3
6 + 2y2y2

1y2
3

9 + 2y3y2
1y2

2


In this process, we did not use our previous calculation, and that’s

a shame. Let’s use the chain-rule to make use of it. With examples 2.2
and 4, we had For a function f : Rn 7→ R, the Jacobian

is the transpose of the gradient

∇x f T = J f (x)J f (x) = ∇x f T

=
(

3 2x2

)
We also need the jacobian of g, which we computed in 4

Jg(y) =

(
1 2 3

y2y3 y1y3 y1y2

)



review of differential calculus theory 10

Applying the chain rule, we obtain that the jacobian of h is the
product J f · Jg (in this order). Recall that for a function Rn 7→ R, the
jacobian is formally the transpose of the gradient. Then,

Jh(y) = J f (g(y)) · Jg(y)

= ∇T
g(y) f · Jg(y)

=
(

3 2y1y2y3

)
·
(

1 2 3
y2y3 y1y3 y1y2

)
=
(

3 + 2y1y2
2y2

3 6 + 2y2y2
1y2

3 9 + 2y3y2
1y2

2

)
and taking the transpose we find the same gradient that we com-

puted before!
Important remark

• The gradient is only defined for function with values in R.

• Note that the chain rule gives us a way to compute the Jacobian
and not the gradient. However, we showed that in the case of a
function f : Rn 7→ R, the jacobian and the gradient are directly
identifiable, because ∇x JT = J(x). Thus, if we want to compute
the gradient of a function by using the chain-rule, the best way to
do it is to compute the Jacobian.

• As the gradient must have the same shape as the variable against
which we derive, and

– we know that the Jacobian is the transpose of the gradient

– and the Jacobian is the dot product of Jacobians

an efficient way of computing the gradient is to find the ordering
of jacobian (or the transpose of the jacobian) that yield correct
shapes!

• the notation ∂·
∂· is often ambiguous and can refer to either the gra-

dient or the Jacobian.
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