Winter 2017

Keywords: Differential, Gradients, partial derivatives, Jacobian, chain-rule

This note is optional and is aimed at students who wish to have a deeper understanding of differential calculus. It defines and explains the links between derivatives, gradients, jacobians, etc. First, we go through definitions and examples for $f: \mathbb{R}^{n} \mapsto \mathbb{R}$. Then we introduce the Jacobian and generalize to higher dimension. Finally, we introduce the chain-rule.

1 Introduction

We use derivatives all the time, but we forget what they mean. In general, we have in mind that for a function $f: \mathbb{R} \mapsto \mathbb{R}$, we have something like

$$
f(x+h)-f(x) \approx f^{\prime}(x) h
$$

Some people use different notation, especially when dealing with higher dimensions, and there usually is a lot of confusion between the following notations

$$
\begin{array}{r}
f^{\prime}(x) \\
\frac{\mathrm{d} f}{\mathrm{~d} x} \\
\frac{\partial f}{\partial x} \\
\nabla_{x} f
\end{array}
$$

However, these notations refer to different mathematical objects, and the confusion can lead to mistakes. This paper recalls some notions about these objects.

Scalar-product and dot-product
Given two vectors a and b,

- scalar-product $\langle a \mid b\rangle=\sum_{i=1}^{n} a_{i} b_{i}$
- dot-product $a^{T} \cdot b=\langle a \mid b\rangle=$ $\sum_{i=1}^{n} a_{i} b_{i}$

2 Theory for $f: \mathbb{R}^{n} \mapsto \mathbb{R}$

2.1 Differential

Formal definition

Let's consider a function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ defined on \mathbb{R}^{n} with the scalar product $\langle\cdot \mid \cdot\rangle$. We suppose that this function is differentiable, which means that for $x \in \mathbb{R}^{n}$ (fixed) and a small variation h (can change) we can write:

$$
\begin{equation*}
f(x+h)=f(x)+\mathrm{d}_{x} f(h)+o_{h \rightarrow 0}(h) \tag{1}
\end{equation*}
$$

and $\mathrm{d}_{x} f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is a linear form, which means that $\forall x, y \in \mathbb{R}^{n}$, we have $\mathrm{d}_{x} f(x+y)=\mathrm{d}_{x} f(x)+\mathrm{d}_{x} f(y)$.

Example
Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ such that $f\left(\binom{x_{1}}{x_{2}}\right)=3 x_{1}+x_{2}^{2}$. Let's pick

$$
\begin{aligned}
\binom{a}{b} \in \mathbb{R}^{2} \text { and } h=\binom{h_{1}}{h_{2}} & \in \mathbb{R}^{2} \text {. We have } \\
f\left(\binom{a+h_{1}}{b+h_{2}}\right) & =3\left(a+h_{1}\right)+\left(b+h_{2}\right)^{2} \\
& =3 a+3 h_{1}+b^{2}+2 b h_{2}+h_{2}^{2} \\
& =3 a+b^{2}+3 h_{1}+2 b h_{2}+h_{2}^{2} \\
& =f(a, b)+3 h_{1}+2 b h_{2}+o(h)
\end{aligned}
$$

Then, $\mathrm{d}_{\binom{a}{b}} f\left(\binom{h_{1}}{h_{2}}\right)=3 h_{1}+2 b h_{2}$

2.2 Link with the gradients

Formal definition

It can be shown that for all linear forms $a: \mathbb{R}^{n} \mapsto \mathbb{R}$, there exists a vector $u_{a} \in \mathbb{R}^{n}$ such that $\forall h \in \mathbb{R}^{n}$

$$
a(h)=\left\langle u_{a} \mid h\right\rangle
$$

In particular, for the differential $\mathrm{d}_{x} f$, we can find a vector $u \in \mathbb{R}^{n}$ such that

$$
\mathrm{d}_{x}(h)=\langle u \mid h\rangle
$$

Notation

$\mathrm{d}_{x} f$ is a linear form $\mathbb{R}^{n} \mapsto \mathbb{R}$
This is the best linear approximation of the function f
$\mathrm{d}_{x} f$ is called the differential of f in x
$o_{h \rightarrow 0}(h)$ (Landau notation) is equivalent to the existence of a function $\epsilon(h)$ such that $\lim _{h \rightarrow 0} \epsilon(h)=0$

$$
h^{2}=h \cdot h=o_{h \rightarrow 0}(h)
$$

Notation for $x \in \mathbb{R}^{n}$, the gradient is usually written $\nabla_{x} f \in \mathbb{R}^{n}$

The dual of a vector space E^{*} is isomorphic to E
See Riesz representation theorem

We can thus define the gradient of f in x

$$
\nabla_{x} f:=u
$$

Then, as a conclusion, we can rewrite equation 2.1

$$
\begin{align*}
f(x+h) & =f(x)+\mathrm{d}_{x} f(h)+o_{h \rightarrow 0}(h) \tag{2}\\
& =f(x)+\left\langle\nabla_{x} f \mid h\right\rangle+o_{h \rightarrow 0}(h) \tag{3}
\end{align*}
$$

Example

Same example as before, $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ such that $f\left(\binom{x_{1}}{x_{2}}\right)=$ $3 x_{1}+x_{2}^{2}$. We showed that

$$
\mathrm{d}_{\binom{a}{b}} f\left(\binom{h_{1}}{h_{2}}\right)=3 h_{1}+2 b h_{2}
$$

We can rewrite this as

$$
\mathrm{d}_{\binom{a}{b}} f\left(\binom{h_{1}}{h_{2}}\right)=\left\langle\binom{ 3}{2 b} \left\lvert\,\binom{ h_{1}}{h_{2}}\right.\right\rangle
$$

and thus our gradient is

$$
\nabla_{\binom{a}{b}} f=\binom{3}{2 b}
$$

2.3 Partial derivatives

Formal definition

Now, let's consider an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of \mathbb{R}^{n}. Let's define the partial derivative

$$
\frac{\partial f}{\partial x_{i}}(x):=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i-1}, x_{i}+h, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h}
$$

Note that the partial derivative $\frac{\partial f}{\partial x_{i}}(x) \in \mathbb{R}$ and that it is defined with respect to the i-th component and evaluated in x.

Example
Same example as before, $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ such that $f\left(x_{1}, x_{2}\right)=$ $3 x_{1}+x_{2}^{2}$. Let's write

Gradients and differential of a function are conceptually very different. The gradient is a vector, while the differential is a function

Notation

Partial derivatives are usually written $\frac{\partial f}{\partial x}$ but you may also see $\partial_{x} f$ or f_{x}^{\prime}

- $\frac{\partial f}{\partial x_{i}}$ is a function $\mathbb{R}^{n} \mapsto \mathbb{R}$
- $\frac{\partial f}{\partial x}=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)^{T}$ is a function $\mathbb{R}^{n} \mapsto \mathbb{R}^{n}$.
- $\frac{\partial f}{\partial x_{i}}(x) \in \mathbb{R}$
- $\frac{\partial f}{\partial x}(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right)^{T} \in \mathbb{R}^{n}$

Depending on the context, most people omit to write the (x) evaluation and just $\underset{\partial f}{\text { write }}$
$\frac{\partial f}{\partial x} \in \mathbb{R}^{n}$ instead of $\frac{\partial f}{\partial x}(x)$

$$
\begin{aligned}
\frac{\partial f}{\partial x_{1}}\left(\binom{a}{b}\right. & =\lim _{h \rightarrow 0} \frac{f\left(\binom{a+h}{b}\right)-f\left(\binom{a}{b}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3(a+h)+b^{2}-\left(3 a+b^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{h} \\
& =3
\end{aligned}
$$

In a similar way, we find that

$$
\frac{\partial f}{\partial x_{2}}\left(\binom{a}{b}\right)=2 b
$$

2.4 Link with the partial derivatives

Formal definition

It can be shown that

$$
\begin{aligned}
\nabla_{x} f & =\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x) e_{i} \\
& =\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)
\end{aligned}
$$

That's why we usually write

$$
\nabla_{x} f=\frac{\partial f}{\partial x}(x)
$$

(same shape as x)
e_{i} is a orthonormal basis. For instance, in the canonical basis

$$
e_{i}=(0, \ldots, 1, \ldots 0)
$$

with 1 at index i
where $\frac{\partial f}{\partial x_{i}}(x)$ denotes the partial derivative of f with respect to the i th component, evaluated in x.

Example

We showed that

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x_{1}}\left(\binom{a}{b}\right)=3 \\
\left.\frac{\partial f}{\partial x_{2}}\binom{a}{b}\right)=2 b
\end{array}\right.
$$

and that

$$
\nabla_{\binom{a}{b}} f=\binom{3}{2 b}
$$

and then we verify that

$$
\nabla\binom{a}{b}^{f=}\binom{\frac{\partial f}{\partial x_{1}}\left(\binom{a}{b}\right)}{\frac{\partial f}{\partial x_{2}}\left(\binom{a}{b}\right)}
$$

3 Summary

Formal definition

For a function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$, we have defined the following objects which can be summarized in the following equation

$$
\begin{array}{rlr}
f(x+h) & =f(x)+\mathrm{d}_{x} f(h)+o_{h \rightarrow 0}(h) & \text { differential } \\
& =f(x)+\left\langle\nabla_{x} f \mid h\right\rangle+o_{h \rightarrow 0}(h) & \text { gradient } \\
& =f(x)+\left\langle\left.\frac{\partial f}{\partial x}(x) \right\rvert\, h\right\rangle+o_{h \rightarrow 0} & \\
& =f(x)+\left\langle\left.\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right) \right\rvert\, h\right\rangle+o_{h \rightarrow 0} & \text { partial derivatives }
\end{array}
$$

Remark

Let's consider $x: \mathbb{R} \mapsto \mathbb{R}$ such that $x(u)=u$ for all u. Then we can easily check that $\mathrm{d}_{u} x(h)=h$. As this differential does not depend on u, we may simply write $\mathrm{d} x$. That's why the following expression has some meaning,

Recall that $a^{T} \cdot b=\langle a \mid b\rangle=\sum_{i=1}^{n} a_{i} b_{i}$

The $\mathrm{d} x$ that we use refers to the differential of $u \mapsto u$, the identity mapping!

$$
\mathrm{d}_{x} f(\cdot)=\frac{\partial f}{\partial x}(x) \mathrm{d} x(\cdot)
$$

because

$$
\begin{aligned}
\mathrm{d}_{x} f(h) & =\frac{\partial f}{\partial x}(x) \mathrm{d} x(h) \\
& =\frac{\partial f}{\partial x}(x) h
\end{aligned}
$$

In higher dimension, we write

$$
\mathrm{d}_{x} f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x) \mathrm{d} x_{i}
$$

4 Jacobian: Generalization to $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$
For a function

$$
f:\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \mapsto\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right)
$$

We can apply the previous section to each $f_{i}(x)$:

$$
\begin{aligned}
f_{i}(x+h) & =f_{i}(x)+\mathrm{d}_{x} f_{i}(h)+o_{h \rightarrow 0}(h) \\
& =f_{i}(x)+\left\langle\nabla_{x} f_{i} \mid h\right\rangle+o_{h \rightarrow 0}(h) \\
& =f_{i}(x)+\left\langle\left.\frac{\partial f_{i}}{\partial x}(x) \right\rvert\, h\right\rangle+o_{h \rightarrow 0} \\
& =f_{i}(x)+\left\langle\left.\left(\frac{\partial f_{i}}{\partial x_{1}}(x), \ldots, \frac{\partial f_{i}}{\partial x_{n}}(x)\right)^{T} \right\rvert\, h\right\rangle+o_{h \rightarrow 0}
\end{aligned}
$$

Putting all this in the same vector yields

$$
f\left(\begin{array}{c}
x_{1}+h_{1} \\
\vdots \\
x_{n}+h_{n}
\end{array}\right)=f\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x}(x)^{T} \cdot h \\
\vdots \\
\frac{\partial f_{m}}{\partial x}(x)^{T} \cdot h
\end{array}\right)+o(h)
$$

Now, let's define the Jacobian matrix as

$$
J(x):=\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x}(x)^{T} \\
\vdots \\
\frac{\partial f_{m}}{\partial x}(x)^{T}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \ldots \frac{\partial f_{1}}{\partial x_{n}}(x) \\
\ddots \\
\frac{\partial f_{m}}{\partial x_{1}}(x) & \ldots \frac{\partial f_{m}}{\partial x_{n}}(x)
\end{array}\right)
$$

Then, we have that

$$
\begin{aligned}
f\left(\begin{array}{c}
x_{1}+h_{1} \\
\vdots \\
x_{n}+h_{n}
\end{array}\right) & =f\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}}(x) \ldots \frac{\partial f_{1}}{\partial x_{n}}(x) \\
\ddots \\
\frac{\partial f_{m}}{\partial x_{1}}(x) \ldots \frac{\partial f_{m}}{\partial x_{n}}(x)
\end{array}\right) \cdot h+o(h) \\
& =f(x)+J(x) \cdot h+o(h)
\end{aligned}
$$

Example 1 : $m=1$
Let's take our first function $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ such that $f\left(\binom{x_{1}}{x_{2}}\right)=$ $3 x_{1}+x_{2}^{2}$. Then, the Jacobian of f is

$$
\begin{aligned}
\left(\frac{\partial f}{\partial x_{1}}(x) \quad \frac{\partial f}{\partial x_{2}}(x)\right) & =\left(\begin{array}{cc}
3 & 2 x_{2}
\end{array}\right) \\
& =\binom{3}{2 x_{2}}^{T} \\
& =\nabla_{f}(x)^{T}
\end{aligned}
$$

The Jacobian matrix has dimensions $m \times n$ and is a generalization of the gradient

In the case where $m=1$, the Jacobian is a row vector
$\frac{\partial f_{1}}{\partial x_{1}}(x) \ldots \frac{\partial f_{1}}{\partial x_{n}}(x)$
Remember that our gradient was defined as a column vector with the same elements. We thus have that $J(x)=\nabla_{x} f^{T}$

Example $2: g: \mathbb{R}^{3} \mapsto \mathbb{R}^{2}$ Let's define

$$
g\left(\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)\right)=\binom{y_{1}+2 y_{2}+3 y_{3}}{y_{1} y_{2} y_{3}}
$$

Then, the Jacobian of g is

$$
\begin{aligned}
J_{g}(y) & =\binom{\frac{\partial\left(y_{1}+2 y_{2}+3 y_{3}\right)}{\partial y}(y)^{T}}{\frac{\partial\left(y_{1} y_{2} y_{3}\right)}{\partial y}(y)^{T}} \\
& =\left(\begin{array}{ccc}
\frac{\partial\left(y_{1}+2 y_{2}+3 y_{3}\right)}{\partial y_{1}}(y) & \frac{\partial\left(y_{1}+2 y_{2}+3 y_{3}\right)}{\partial y_{2}}(y) & \frac{\partial\left(y_{1}+2 y_{2}+3 y_{3}\right)}{\partial y_{3}}(y) \\
\frac{\partial\left(y_{1} y_{2} y_{3}\right)}{\partial y_{1}}(y) & \frac{\partial\left(y_{1} y_{2} y_{3}\right)}{\partial y_{2}}(y) & \frac{\partial\left(y_{1} y_{2} y_{3}\right)}{\partial y_{3}}(y)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 2 & 3 \\
y_{2} y_{3} & y_{1} y_{3} & y_{1} y_{2}
\end{array}\right)
\end{aligned}
$$

5 Generalization to $f: \mathbb{R}^{n \times p} \mapsto \mathbb{R}$
If a function takes as input a matrix $A \in \mathbb{R}^{n \times p}$, we can transform this matrix into a vector $a \in \mathbb{R}^{n p}$, such that

$$
A[i, j]=a[i+n j]
$$

Then, we end up with a function $\tilde{f}: \mathbb{R}^{n p} \mapsto \mathbb{R}$. We can apply the results from 3 and we obtain for $x, h \in \mathbb{R}^{n p}$ corresponding to $X, h \in \mathbb{R}^{n \times p}$,

$$
\tilde{f}(x+h)=f(x)+\left\langle\nabla_{x} f \mid h\right\rangle+o(h)
$$

where $\nabla_{x} f=\left(\begin{array}{c}\frac{\partial f}{\partial x_{1}}(x) \\ \vdots \\ \frac{\partial f}{\partial x_{n p}(x)}\end{array}\right)$.
Now, we would like to give some meaning to the following equation

$$
f(X+H)=f(X)+\left\langle\nabla_{X} f \mid H\right\rangle+o(H)
$$

Now, you can check that if you define

$$
\nabla_{X} f_{i j}=\frac{\partial f}{\partial X_{i j}}(X)
$$

that these two terms are equivalent

The gradient of f wrt to a matrix X is a matrix of same shape as X and defined by
$\nabla_{X} f_{i j}=\frac{\partial f}{\partial X_{i j}}(X)$

$$
\begin{aligned}
\left\langle\nabla_{x} f \mid h\right\rangle & =\left\langle\nabla_{X} f \mid H\right\rangle \\
\sum_{i=1}^{n p} \frac{\partial f}{\partial x_{i}}(x) h_{i} & =\sum_{i, j} \frac{\partial f}{\partial X_{i j}}(X) H_{i j}
\end{aligned}
$$

6 Generalization to $f: \mathbb{R}^{n \times p} \mapsto \mathbb{R}^{m}$
Applying the same idea as before, we can write

$$
f(x+h)=f(x)+J(x) \cdot h+o(h)
$$

where J has dimension $m \times n \times p$ and is defined as

$$
J_{i j k}(x)=\frac{\partial f_{i}}{\partial X_{j k}}(x)
$$

Writing the 2d-dot product $\delta=J(x) \cdot h \in \mathbb{R}^{m}$ means that the i-th component of δ is

$$
\delta_{i}=\sum_{j=1}^{n} \sum_{k=1}^{p} \frac{\partial f_{i}}{\partial X_{j k}}(x) h_{j k}
$$

7 Chain-rule

Formal definition

Now let's consider $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ and $g: \mathbb{R}^{p} \mapsto \mathbb{R}^{n}$. We want to compute the differential of the composition $h=f \circ g$ such that $h: x \mapsto u=g(x) \mapsto f(g(x))=f(u)$, or

$$
\mathrm{d}_{x}(f \circ g)
$$

It can be shown that the differential is the composition of the differentials

$$
\mathrm{d}_{x}(f \circ g)=\mathrm{d}_{g(x)} f \circ \mathrm{~d}_{x} g
$$

Where \circ is the composition operator. Here, $\mathrm{d}_{g(x)} f$ and $\mathrm{d}_{x} g$ are linear transformations (see section 4). Then, the resulting differential is also a linear transformation and the jacobian is just the dot product between the jacobians. In other words,

$$
J_{h}(x)=J_{f}(g(x)) \cdot J_{g}(x)
$$

where • is the dot-product. This dot-product between two matrices can also be written component-wise:

Let's generalize the generalization of the previous section

You can apply the same idea to any dimensions!

The chain-rule is just writing the resulting jacobian as a dot product of jacobians. Order of the dot product is very important!

$$
J_{h}(x)_{i j}=\sum_{k=1}^{n} J_{f}(g(x))_{i k} \cdot J_{g}(x)_{k j}
$$

Example

Let's keep our example function $f:\left(\binom{x_{1}}{x_{2}}\right) \mapsto 3 x_{1}+x_{2}^{2}$ and our
function $g:\left(\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)\right)=\binom{y_{1}+2 y_{2}+3 y_{3}}{y_{1} y_{2} y_{3}}$.
The composition of f and g is $h=f \circ g: \mathbb{R}^{3} \mapsto \mathbb{R}$

$$
\begin{aligned}
h\left(\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)\right) & =f\left(\binom{y_{1}+2 y_{2}+3 y_{3}}{y_{1} y_{2} y_{3}}\right) \\
& =3\left(y_{1}+2 y_{2}+3 y_{3}\right)+\left(y_{1} y_{2} y_{3}\right)^{2}
\end{aligned}
$$

We can compute the three components of the gradient of h with the partial derivatives

$$
\begin{aligned}
\frac{\partial h}{\partial y_{1}}(y) & =3+2 y_{1} y_{2}^{2} y_{3}^{2} \\
\frac{\partial h}{\partial y_{2}}(y) & =6+2 y_{2} y_{1}^{2} y_{3}^{2} \\
\frac{\partial h}{\partial y_{3}}(y) & =9+2 y_{3} y_{1}^{2} y_{2}^{2}
\end{aligned}
$$

And then our gradient is

$$
\nabla_{y} h=\left(\begin{array}{l}
3+2 y_{1} y_{2}^{2} y_{3}^{2} \\
6+2 y_{2} y_{1}^{2} y_{3}^{2} \\
9+2 y_{3} y_{1}^{2} y_{2}^{2}
\end{array}\right)
$$

In this process, we did not use our previous calculation, and that's a shame. Let's use the chain-rule to make use of it. With examples 2.2 and 4 , we had

For a function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$, the Jacobian is the transpose of the gradient

$$
\nabla_{x} f^{T}=J_{f}(x)
$$

We also need the jacobian of g, which we computed in 4

$$
J_{g}(y)=\left(\begin{array}{ccc}
1 & 2 & 3 \\
y_{2} y_{3} & y_{1} y_{3} & y_{1} y_{2}
\end{array}\right)
$$

Applying the chain rule, we obtain that the jacobian of h is the product $J_{f} \cdot J_{g}$ (in this order). Recall that for a function $\mathbb{R}^{n} \mapsto \mathbb{R}$, the jacobian is formally the transpose of the gradient. Then,

$$
\begin{aligned}
J_{h}(y) & =J_{f}(g(y)) \cdot J_{g}(y) \\
& =\nabla_{g(y)}^{T} f \cdot J_{g}(y) \\
& =\left(\begin{array}{ll}
3 & 2 y_{1} y_{2} y_{3}
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 2 & 3 \\
y_{2} y_{3} & y_{1} y_{3} & y_{1} y_{2}
\end{array}\right) \\
& =\left(\begin{array}{lll}
3+2 y_{1} y_{2}^{2} y_{3}^{2} & 6+2 y_{2} y_{1}^{2} y_{3}^{2} & 9+2 y_{3} y_{1}^{2} y_{2}^{2}
\end{array}\right)
\end{aligned}
$$

and taking the transpose we find the same gradient that we computed before!

Important remark

- The gradient is only defined for function with values in \mathbb{R}.
- Note that the chain rule gives us a way to compute the Jacobian and not the gradient. However, we showed that in the case of a function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$, the jacobian and the gradient are directly identifiable, because $\nabla_{x} J^{T}=J(x)$. Thus, if we want to compute the gradient of a function by using the chain-rule, the best way to do it is to compute the Jacobian.
- As the gradient must have the same shape as the variable against which we derive, and
- we know that the Jacobian is the transpose of the gradient
- and the Jacobian is the dot product of Jacobians
an efficient way of computing the gradient is to find the ordering of jacobian (or the transpose of the jacobian) that yield correct shapes!
- the notation $\frac{\partial}{\partial}$ is often ambiguous and can refer to either the gradient or the Jacobian.

